|
|
Multiple conical spin order in spinel structure stabilized by magnetic anisotropy |
Xiao-Yan Yao1( ),Li-Juan Yang2 |
1. Department of Physics, Southeast University, Nanjing 211189, China 2. School of Information Science and Technology, Suqian College, Suqian 223800, China |
|
|
Abstract Conical spin order, where the spin components along the conical axis form magnetization while the spiral parts induce ferroelectric polarization, possesses multiferroicity with inherent magnetoelectric coupling. A Monte Carlo simulation performed using a classical Heisenberg spinel (AB2O4) model reveals a multiple conical spin order, i.e., three modulations with different cone angles and wavelengths on A sites and two alternate B sites. The spin order not only exists as the ground state but also survives locally stably in a larger parameter region. The whole existence range can be effectively expanded by anisotropy to cover the cases of CoCr2O4 and MnCr2O4. The multiple conical spin order is well maintained and finely tuned by frustration and anisotropy over the whole existence range, and the magnetic and ferroelectric properties are influenced correspondingly.
|
Keywords
conical spin order
multiferroicity
spinel structure
Monte Carlo simulation
|
Corresponding Author(s):
Xiao-Yan Yao
|
Issue Date: 17 March 2017
|
|
1 |
Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett. 96(20), 207204 (2006)
https://doi.org/10.1103/PhysRevLett.96.207204
|
2 |
I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing, Appl. Phys. Lett. 94(4), 042505 (2009)
https://doi.org/10.1063/1.3076102
|
3 |
Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T. Chen, M. van Veenendaal, T. A. Kaplan, and S. W. Cheong, Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4, Phys. Rev. Lett. 102(6), 067601 (2009)
https://doi.org/10.1103/PhysRevLett.102.067601
|
4 |
I. Urcelay-Olabarria, E. Ressouche, A. A. Mukhin, V. Y. Ivanov, A. M. Balbashov, J. L. Garcia-Munoz, and V. Skumryev, Conical antiferromagnetic order in the ferroelectric phase of Mn0.8Co0.2WO4 resulting from the competition between collinear and cycloidal structures, Phys. Rev. B 85(22), 224419 (2012)
https://doi.org/10.1103/PhysRevB.85.224419
|
5 |
N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, and Y. Tokura, Electricdipole- active magnetic resonance in the conical-spin magnet Ba2Mg2Fe12O22, Phys. Rev. B 80(22), 220406 (2009)
https://doi.org/10.1103/PhysRevB.80.220406
|
6 |
S. Ishiwata, Y. Taguchi, Y. Tokunaga, H. Murakawa, Y. Onose, and Y. Tokura, Electric polarization induced by transverse magnetic field in the anisotropycontrolled conical helimagnet Ba2(Mg1−xZnx)2Fe12O22, Phys. Rev. B 79(18), 180408 (2009)
https://doi.org/10.1103/PhysRevB.79.180408
|
7 |
H. B. Lee, S. H. Chun, K. W. Shin, B. G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S. N. Yun, T. Y. Joung, and J. H. Chung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22, Phys. Rev. B 86(9), 094435 (2012)
https://doi.org/10.1103/PhysRevB.86.094435
|
8 |
L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, Z. R. Yang, J. G. Wan, and J. M. Liu, Coupled ferroelectric polarization and magnetization in spinel FeCr2S4, Sci. Rep. 4, 6530 (2014)
https://doi.org/10.1038/srep06530
|
9 |
Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)
https://doi.org/10.1038/nmat2826
|
10 |
Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Multiferroic M-type hexaferrites with a roomtemperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105(25), 257201 (2010)
https://doi.org/10.1103/PhysRevLett.105.257201
|
11 |
M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, and T. Kimura, Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41, Phys. Rev. Lett. 106(8), 087201 (2011)
https://doi.org/10.1103/PhysRevLett.106.087201
|
12 |
S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet, Science 319(5870), 1643 (2008)
https://doi.org/10.1126/science.1154507
|
13 |
H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, and Y. Tokura, Generation of electric polarization with rotating magnetic field in helimagnet ZnCr2Se4, J. Phys. Soc. Jpn. 77(4), 043709 (2008)
https://doi.org/10.1143/JPSJ.77.043709
|
14 |
H. Murakawa, Y. Onose, F. Kagawa, S. Ishiwata, Y. Kaneko, and Y. Tokura, Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0.55Y0.45MnO3, Phys. Rev. Lett. 101(19), 197207 (2008)
https://doi.org/10.1103/PhysRevLett.101.197207
|
15 |
X. Yao, V. C. Lo, and J. M. Liu, Magnetic field controlled reversal of ferroelectric polarization in conical spin ordered multiferroics: Monte Carlo simulation, J. Appl. Phys. 106(7), 073901 (2009)
https://doi.org/10.1063/1.3234401
|
16 |
X. Yao, Continuous rotation of magnetization controlled by electric field in multiferroic state originated from conical spin order, J. Phys. Soc. Jpn. 79(4), 043801 (2010)
https://doi.org/10.1143/JPSJ.79.043801
|
17 |
T. A. Kaplan, K. Dwight, D. Lyons, and N. Menyuk, Classical theory of the ground spin state in spinels, J. Appl. Phys. 32(3), S13 (1961)
https://doi.org/10.1063/1.2000376
|
18 |
D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, Classical theory of the ground spin-state in cubic spinels, Phys. Rev. 126(2), 540 (1962)
https://doi.org/10.1103/PhysRev.126.540
|
19 |
J. M. Hastings and L. M. Corliss, Magnetic structure of manganese chromite, Phys. Rev. 126(2), 556 (1962)
https://doi.org/10.1103/PhysRev.126.556
|
20 |
N. Menyuk, K. Dwight, and A. Wold, Ferrimagnetic spiral configurations in cobalt chromite, J. Phys. (Paris) 25(5), 528 (1964)
https://doi.org/10.1051/jphys:01964002505052801
|
21 |
K. Tomiyasu, J. Fukunaga, and H. Suzuki, Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements, Phys. Rev. B 70(21), 214434 (2004)
https://doi.org/10.1103/PhysRevB.70.214434
|
22 |
C. Ederer and M. Komelj, Magnetic coupling in CoCr2O4 and MnCr2O4: An LSDA+ Ustudy, Phys. Rev. B 76(6), 064409 (2007)
https://doi.org/10.1103/PhysRevB.76.064409
|
23 |
G. Lawes, B. Melot, K. Page, C. Ederer, M. A. Hayward, T. Proffen, and R. Seshadri, Dielectric anomalies and spiral magnetic order in CoCr2O4, Phys. Rev. B 74(2), 024413 (2006)
https://doi.org/10.1103/PhysRevB.74.024413
|
24 |
X. Yao, Stable and locally stable conditions for a conical spin state in the spinel structure, EPL 102(6), 67013 (2013)
https://doi.org/10.1209/0295-5075/102/67013
|
25 |
H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett. 95(5), 057205 (2005)
https://doi.org/10.1103/PhysRevLett.95.057205
|
26 |
I. A. Sergienko and E. Dagotto, Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites, Phys. Rev. B 73(9), 094434 (2006)
https://doi.org/10.1103/PhysRevB.73.094434
|
27 |
H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. I. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, and K. Hirota, Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22, Phys. Rev. B 80(18), 180419 (2009)
https://doi.org/10.1103/PhysRevB.80.180419
|
28 |
S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Magnetic-ion-induced displacive electric polarization in FeO5 bipyramidal units of (Ba, Sr)Fe12O19 hexaferrites, Phys. Rev. B 90(18), 180404(R) (2014)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|