Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (5) : 128703    https://doi.org/10.1007/s11467-017-0688-4
RESEARCH ARTICLE
Mesoscopic model for binary fluids
C. Echeverria1, K. Tucci1,2, O. Alvarez-Llamoza3,4, E. E. Orozco-Guillén5, M. Morales6, M. G. Cosenza2()
1. CeSiMo, Universidad de Los Andes, Mérida 5251, Mérida, Venezuela
2. Grupo de Caos y Sistemas Complejos, Centro de Física Fundamental, Universidad de Los Andes, Mérida, Venezuela
3. Departamento de Física, FACYT, Universidad de Carabobo, Valencia, Venezuela
4. Facultad de Ingeniería, Universidad Católica de Cuenca, Ecuador
5. Programa Académico de Ingeniería en Energía, Universidad Politécnica de Sinaloa, 82199 Mazatlán, Mexico
6. Programa Académico de Ingeniería en Nanotecnología, Universidad Politécnica de Sinaloa, 82199 Mazatlán, Mexico
 Download: PDF(3082 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

Keywords multiparticle collision dynamics      mesoscopic models      phase separation      interface dynamics     
Corresponding Author(s): M. G. Cosenza   
Issue Date: 09 June 2017
 Cite this article:   
C. Echeverria,K. Tucci,O. Alvarez-Llamoza, et al. Mesoscopic model for binary fluids[J]. Front. Phys. , 2017, 12(5): 128703.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0688-4
https://academic.hep.com.cn/fop/EN/Y2017/V12/I5/128703
1 M.Müller, D.Charypar, and M.Gross, Particle-based fluid simulation for interactive applications, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp 154–159(2003)
2 S.Premžoe, T.Tasdizen, J.Bigler, A.Lefohn, and R. T.Whitaker, Particle-based simulation of fluids, Comput. Graph. Forum22(3), 401(2003)
https://doi.org/10.1111/1467-8659.00687
3 Z. G.Mills, W.Mao, and A.Alexeev, Mesoscale modeling: Solving complex flows in biology and biotechnology, Trends Biotechnol. 31(7), 426(2013)
https://doi.org/10.1016/j.tibtech.2013.05.001
4 M. G.Saundersand G. A.Voth, Coarse-graining methods for computational biology, Annu. Rev. Biophys. 42(1), 73(2013)
https://doi.org/10.1146/annurev-biophys-083012-130348
5 U.Frisch, B.Hasslacher, and Y.Pomeau, Lattice-gas automata for the Navier–Stokes equation, Phys. Rev. Lett. 56(14), 1505(1986)
https://doi.org/10.1103/PhysRevLett.56.1505
6 S.Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
7 G.Falcucci, S.Ubertini, and S.Succi, Lattice Boltzmann simulations of phase-separating flows at large density ratios: The case of doubly-attractive pseudopotentials, Soft Matter6(18), 4357(2010)
https://doi.org/10.1039/c002974b
8 G.Falcucci, G.Bella, G.Shiatti, S.Chibbaro, M.Sbragaglia, and S.Succi, Lattice Boltzmann models with mid-range interactions, Commun. Comput. Phys. 2, 1071(2007)
9 G.Falcucci, S.Ubertini, C.Biscarini, S. D.Francesco,D.Chiappini, S.Palpacelli, A. D.Maio, and S.Succi, Lattice Boltzmann methods for multiphase flow simulations across scales, Commun. Comput. Phys. 9(02), 269(2011)
https://doi.org/10.4208/cicp.221209.250510a
10 P. J.Hoogerbruggeand J.Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett.19(3), 155(1992)
https://doi.org/10.1209/0295-5075/19/3/001
11 R. D.Grootand P. B.Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107(11), 4423(1997)
https://doi.org/10.1063/1.474784
12 P.Españoland M.Revenga, Smoothed dissipative particle dynamics, Phys. Rev. E67(2), 026705(2003)
https://doi.org/10.1103/PhysRevE.67.026705
13 A.Malevanetsand R.Kapral, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110(17), 8605(1999)
https://doi.org/10.1063/1.478857
14 A.Malevanetsand R.Kapral, Solute molecular dynamics in a mesoscale solvent, J. Chem. Phys. 112(16), 7260(2000)
https://doi.org/10.1063/1.481289
15 A.Malevanetsand R.Kapral, Mesoscopic multi-particle collision model for fluid ow and molecular dynamics, in: Novel Methods in Soft Matter Simulations, Eds. M Karttunen, I. Vattulainen, and A. Lukkarinen, Berlin: Springer, 2003
16 G.Gompper, T.Ihle, K.Kroll, and R. G.Winkler, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, advanced computer simulation approaches for soft matter sciences III, Adv. Polym. Sci. 221, 1 (2009)
17 J. T.Paddingand A. A.Louis, Hydrodynamic and Brownian fluctuations in sedimenting suspensions, Phys. Rev. Lett.93(22), 220601(2004)
https://doi.org/10.1103/PhysRevLett.93.220601
18 M.Hecht, J.Harting, M.Bier, J.Reinshagen, and H. J.Herrmann, Shear viscosity of claylike colloids in computer simulations and experiments, Phys. Rev. E74(2), 021403(2006)
https://doi.org/10.1103/PhysRevE.74.021403
19 K.Mussawisade, M.Ripoll, R. G.Winkler, and G.Gompper, Dynamics of polymers in a particle-based mesoscopic solvent, J. Chem. Phys. 123(14), 144905(2005)
https://doi.org/10.1063/1.2041527
20 M.Ripoll, R. G.Winkler, and G.Gompper, Hydrodynamic screening of star polymers in shear flow, Eur. Phys. J. E23(4), 349(2007)
https://doi.org/10.1140/epje/i2006-10220-0
21 C.Echeverriaand R.Kapral, Macromolecular dynamics in crowded environments, J. Chem. Phys. 132(10), 104902(2010)
https://doi.org/10.1063/1.3319672
22 C.Echeverria, Y.Togashi, A. S.Mikhailov, and R.Kapral, A mesoscopic model for protein enzymatic dynamics in solution, Phys. Chem. Chem. Phys. 13(22), 10527(2011)
https://doi.org/10.1039/c1cp00003a
23 C.Echeverriaand R.Kapral, Molecular crowding and protein enzymatic dynamics, Phys. Chem. Chem. Phys. 14(19), 6755(2012)
https://doi.org/10.1039/c2cp40200a
24 C.Echeverriaand R.Kapral, Diffusional correlations among multiple active sites in a single enzyme, Phys. Chem. Chem. Phys. 16(13), 6211(2014)
https://doi.org/10.1039/c3cp55252g
25 H.Noguchiand G.Gompper, Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations, Phys. Rev. E72(1), 011901(2005)
https://doi.org/10.1103/PhysRevE.72.011901
26 K.Rohlf, S.Fraser, and R.Kapral, Reactive multiparticle collision dynamics, Comput. Phys. Commun. 179(1–3), 132(2008)
https://doi.org/10.1016/j.cpc.2008.01.027
27 K.Tucciand R.Kapral, Mesoscopic model for diffusioninfluenced reaction dynamics, J. Chem. Phys. 120(17), 8262(2004)
https://doi.org/10.1063/1.1690244
28 K.Tucciand R.Kapral, Mesoscopic multi-particle collision dynamics of reaction diffusion fronts, J. Phys. Chem. B109(45), 21300(2005)
https://doi.org/10.1021/jp052701u
29 C.Echevería, K.Tucci, and R.Kapral, Diffusion and reaction in crowded environments, J. Phys.: Condens. Matter19(6), 065146(2007)
https://doi.org/10.1088/0953-8984/19/6/065146
30 C.Echeverriaand R.Kapral, Autocatalytic reaction dynamics in systems crowded by catalytic obstacles, Physica D239(11), 791(2010)
https://doi.org/10.1016/j.physd.2009.06.005
31 Y.Hashimoto, Y.Chen, and H.Ohashi, Immiscible realcoded lattice gas, Comput. Phys. Commun. 129(1–3), 56(2000)
https://doi.org/10.1016/S0010-4655(00)00092-8
32 Y.Inoue, Y.Chen, and H.Ohashi, A mesoscopic simulation model for immiscible multiphase fluids, J. Comput. Phys. 201(1), 191(2004)
https://doi.org/10.1016/j.jcp.2004.05.008
33 T.Sakai, Y.Chen, and H.Ohashi, Real-coded lattice gas model for ternary amphiphilic fluids, Phys. Rev. E65(3), 031503(2002)
https://doi.org/10.1103/PhysRevE.65.031503
34 F.Drube, Selfdiffusiophoretic Janus Colloids, Doctoral dissertation, Ludwig-Maximilians-Universität, München, 2013
35 E.Tüzel, G.Pan, T.Ihle, and D. M.Kroll, Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures,Europhys. Lett. 80(4), 40010(2007)
https://doi.org/10.1209/0295-5075/80/40010
36 T.Ihleand D. M.Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow, Phys. Rev. E63(2), 020201(2001)
https://doi.org/10.1103/PhysRevE.63.020201
37 M.Laradji, S.Toxvaerd, and O. G.Mouritsen, Molecular dynamics simulation of spinodal decomposition in three-dimensional binary fluids, Phys. Rev. Lett. 77(11), 2253(1996)
https://doi.org/10.1103/PhysRevLett.77.2253
38 S. A.Safran, Statistical Thermodynamics of Surfaces: Interfaces and Membranes, Addison-Wesley, 1994
39 A. J.Bray, Theory of phase-ordering kinetics, Adv. Phys. 51, 481(2002)
https://doi.org/10.1080/00018730110117433
40 E.Díaz-Herrera, J.Alejandre, G.Ramirez-Santiago, and F.Forstmann, Interfacial tension behavior of binary and ternary mixtures of partially miscible Lennard- Jones fluids: A molecular dynamics simulation, J. Chem. Phys. 110(16), 8084(1999)
https://doi.org/10.1063/1.478710
41 S.Iatsevitchand F.Forstmann, Density profiles at liquid–vapor and liquid–liquid interfaces: An integral equation study, J. Chem. Phys. 107(17), 6925(1997)
https://doi.org/10.1063/1.474943
42 H. X.Zhou, G.Rivas, and A. P.Minton, Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences, Annu. Rev. Biophys. 37(1), 375(2008)
https://doi.org/10.1146/annurev.biophys.37.032807.125817
43 A. S.Verkman, Solute and macromolecule diffusion in cellular aqueous compartments, Trends Biochem. Sci.27(1), 27(2002)
https://doi.org/10.1016/S0968-0004(01)02003-5
44 L.Stagg, S. Q.Zhang, M. S.Cheung, and P.Wittung- Stafshede, Molecular crowding enhances native structure and stability of a/bprotein flavodoxin, Proc. Natl. Acad. Sci. USA104(48), 18976(2007)
https://doi.org/10.1073/pnas.0705127104
[1] Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates[J]. Front. Phys. , 2018, 13(4): 137108-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed