Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (1) : 134201    https://doi.org/10.1007/s11467-017-0707-5
RESEARCH ARTICLE
Evolution of finite energy Airy beams in cubic-quintic atomic vapor system
Zhen-Kun Wu1, Hao Guo1, Wei Wang2(), Yu-Zong Gu1()
1. Institute of Microsystem Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
2. Key Laboratory for Physical Electronics and Devices of the Ministry of Education, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(22526 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In a numerical investigation, we demonstrate the evolution of a one-dimensional and two-dimensional finite energy Airy beam in a ?-type three-level atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the dressing effect. Quasi-solitons and soliton pairs are observed due to this competition mechanism. We find that the frequency detuning of the pump field and its power greatly affect the formation and evolution of generated solitons. In general, around the twophoton resonance point and for low intensities of the pump field, it is less difficult to form solitons. This investigation enriches the study of the propagation properties of Airy beams and soliton generation in atomic vapor.

Keywords airy beam      cubic-quintic nonlinear      soliton      atomic vapor system     
Corresponding Author(s): Wei Wang,Yu-Zong Gu   
Issue Date: 07 September 2017
 Cite this article:   
Zhen-Kun Wu,Hao Guo,Wei Wang, et al. Evolution of finite energy Airy beams in cubic-quintic atomic vapor system[J]. Front. Phys. , 2018, 13(1): 134201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0707-5
https://academic.hep.com.cn/fop/EN/Y2018/V13/I1/134201
1 G. A.Siviloglou and D. N.Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32(8), 979 (2007)
https://doi.org/10.1364/OL.32.000979
2 G. A.Siviloglou, J.Broky, A.Dogariu, and D. N.Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99(21), 213901(2007)
https://doi.org/10.1103/PhysRevLett.99.213901
3 J.Broky, G. A.Siviloglou,A.Dogariu, and D. N.Christodoulides, Self-healing properties of optical Airy beams, Opt. Express16(17), 12880(2008)
https://doi.org/10.1364/OE.16.012880
4 M. V.Berryand N. L.Balazs, Nonspreading wave packets, Am. J. Phys. 47(3), 264(1979)
https://doi.org/10.1119/1.11855
5 Y. Q.Zhang, M. R.Belić, Z. K.Wu, H. B.Zheng, K. Q.Lu, Y. Y.Li, and Y. P.Zhang, Soliton pair generation in the interactions of Airy and nonlinear accelerating beams, Opt. Lett. 38(22), 4585(2013)
https://doi.org/10.1364/OL.38.004585
6 Z. K.Wu, P.Li, and Y. Z.Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203(2017)
https://doi.org/10.1007/s11467-016-0613-2
7 Y. Q.Zhang, M. R.Belić, H. B.Zheng, H. X.Chen, C. B.Li, Y. Y.Li, and Y. P.Zhang, Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media, Opt. Express22(6), 7160(2014)
https://doi.org/10.1364/OE.22.007160
8 C. D.Chen, B.Chen, X.Peng, and D. M.Deng, Propagation of Airy–Gaussian beam in Kerr medium, J. Opt. 17(3), 035504(2015)
https://doi.org/10.1088/2040-8978/17/3/035504
9 Z. K.Wuand Y. Z.Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and Finite-Energy Airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402(2016)
https://doi.org/10.7566/JPSJ.85.124402
10 B.Chen, C. D.Chen, X.Peng, Y. L.Peng, M. L.Zhou, D. M.Deng, and H.Guo, Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium, J. Opt. 18(5), 055504(2016)
https://doi.org/10.1088/2040-8978/18/5/055504
11 F.Zhuang, J.Shen, X.Du, and D.Zhao, Propagation and modulation of Airy beams through a four-level electromagnetic induced transparency atomic vapor, Opt. Lett. 37(15), 3054(2012)
https://doi.org/10.1364/OL.37.003054
12 C.Hangand G.Huang, Slow-light Airy wave packets and their active control via electromagnetically induced transparency, Phys. Rev. A88(1), 013825(2013)
https://doi.org/10.1103/PhysRevA.88.013825
13 F. J.Ye, L. Y.Zhang, F. R.Wang, Y. M.Yang, Y.Yu, J.Liu, D.Wei, P.Zhang, H.Gao, and F. L.Li, Propagation of Airy beams in a close-Ʌ electromagnetically induced transparency system, Opt. Commun. 345, 129(2015)
https://doi.org/10.1016/j.optcom.2015.02.001
14 Z. K.Wu, S.Wang, W. F.Hu, and Y. Z.Gu, Dynamics of finite energy airy beams carrying orbital angular momentum in multilevel atomic vapors, J. Phys. Soc. Jpn. 85(10), 104302(2016)
https://doi.org/10.7566/JPSJ.85.104302
15 S.Tanevand D.Pushkarov, Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibers and waveguides, Opt. Commun. 141(5–6), 322(1997)
https://doi.org/10.1016/S0030-4018(97)00230-7
16 Z. K.Wu, Y. Q.Zhang, C. Z.Yuan, F.Wen, H. B.Zheng, Y. P.Zhang, and M.Xiao, Cubic-quintic condensate solitons in four-wave mixing, Phys. Rev. A88(6), 063828(2013)
https://doi.org/10.1103/PhysRevA.88.063828
17 Z. K.Wu, K. G.Chang, Y.Hu, Y. Z.Zhang, Z. H.Jiang, and Y. P.Zhang, Modulation of four-wave mixing via photonic band gap, Front. Phys. 9(5), 665(2014)
https://doi.org/10.1007/s11467-014-0434-0
18 H.Michinel, M. J.Paz-Alonso, and V. M.Perez-Garcia, Turning light into a liquid via atomic coherence, Phys. Rev. Lett. 96(2), 023903(2006)
https://doi.org/10.1103/PhysRevLett.96.023903
19 D. E.Edmundsonand R. H.Enns, Particle-like nature of colliding three-dimensional optical solitons, Phys. Rev. A51(3), 2491(1995)
https://doi.org/10.1103/PhysRevA.51.2491
20 A. S.Desyatnikov, Y. S.Kivshar, and L.Torner, Optical vortices and vortex solitons, Prog. Opt. 47, 291(2005)
https://doi.org/10.1016/S0079-6638(05)47006-7
21 Y. P.Zhang,Z. G.Wang,Z. Q.Nie, C. B.Li, H. X.Chen, K. Q.Lu, and M.Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904(2011)
https://doi.org/10.1103/PhysRevLett.106.093904
22 Y. P.Zhang, Z. Q.Nie, and M.Xiao, Coherent Control of Four-Wave Mixing, Heidelberg: Springer, 2010
23 S. E.Harris, Electromagnetically induced transparency, Phys. Today50(7), 36(1997)
https://doi.org/10.1063/1.881806
24 I.Chremmos, P.Zhang, J.Prakash, N. K.Efremidis, D. N.Christodoulides, and Z.Chen, Fourier-space generation of abruptly autofocusing beams and optical bottle beams, Opt. Lett. 36(18), 3675(2011)
https://doi.org/10.1364/OL.36.003675
25 P.Panagiotopoulos, D. G.Papazoglou, A.Couairon, and S.Tzortzakis, Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets, Nat. Commun. 4, 2622(2013)
https://doi.org/10.1038/ncomms3622
26 J.Sun, Z. C.Zuo, X.Mi, Z. H.Yu, Q.Jiang, Y. B.Wang, L. A.Wu, and P. M.Fu, Two-photon resonant four-wave mixing in a dressed atomic system, Phys. Rev. A70(5), 053820(2004)
https://doi.org/10.1103/PhysRevA.70.053820
27 H.Li, V. A.Sautenkov, Y. V.Rostovtsev, G. R.Welch, P. R.Hemmer, and M. O.Scully, Electromagnetically induced transparency controlled by a microwave field, Phys. Rev. A80(2), 023820(2009)
https://doi.org/10.1103/PhysRevA.80.023820
28 Z. Q.Nie, H. B.Zheng, P. Z.Li, Y. M.Yang, Y. P.Zhang, and M.Xiao, Interacting multiwave mixing in a five-level atomic system, Phys. Rev. A77(6), 063829(2008)
https://doi.org/10.1103/PhysRevA.77.063829
29 P. M.Fu, X.Mi, Z. H.Yu, Q.Jiang, Y. P.Zhang, and X. F.Li, Ultrafast modulation spectroscopy in a cascade three-level system, Phys. Rev. A52(6), 4867(1995)
https://doi.org/10.1103/PhysRevA.52.4867
[1] Jin-Cheng Shi, Jian-Hua Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials[J]. Front. Phys. , 2020, 15(1): 12602-.
[2] Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2018, 13(2): 130307-.
[3] Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices[J]. Front. Phys. , 2018, 13(1): 130501-.
[4] Yong-Yao Li, Zhi-Wei Fan, Zhi-Huan Luo, Yan Liu, He-Xiang He, Jian-Tao Lü, Jia-Ning Xie, Chun-Qing Huang, Hai-Shu Tan. Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons[J]. Front. Phys. , 2017, 12(5): 124206-.
[5] Zhen-Kun Wu,Peng Li,Yu-Zong Gu. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media[J]. Front. Phys. , 2017, 12(5): 124203-.
[6] Hongcheng Wang. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects[J]. Front. Phys. , 2016, 11(5): 114204-.
[7] Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li. Quadrupolar matter-wave soliton in two-dimensional free space[J]. Front. Phys. , 2015, 10(4): 100507-.
[8] Jin-Hong Huang, Hong-Ji Li, Xiang-Yu Zhang, Yong-Yao Li. Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects[J]. Front. Phys. , 2015, 10(2): 104201-.
[9] Shu-Wei Song, Lin Wen, Chao-Fei Liu, S.-C. Gou, Wu-Ming Liu. Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2013, 8(3): 302-318.
[10] Xiao-fei ZHANG (张晓斐), Xing-hua HU (胡兴华), Deng-shan WANG (王灯山), Xun-xu LIU (刘循序), Wu-ming LIU (刘伍明). Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential[J]. Front. Phys. , 2011, 6(1): 46-60.
[11] PANG Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)[J]. Front. Phys. , 2008, 3(4): 457-488.
[12] LOU Ci-bo, TANG Li-qin, SONG Dao-hong, WANG Xiao-sheng, XU Jing-jun, CHEN Zhi-gang. Novel spatial solitons in light-induced photonic bandgap structures[J]. Front. Phys. , 2008, 3(1): 1-12.
[13] PANG Xiao-feng. Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications ( I )[J]. Front. Phys. , 2007, 2(4): 469-493.
[14] MA Jin-long, MA Fei-te. Solitary wave solutions of nonlinear financial markets: data-modeling-concept-practicing[J]. Front. Phys. , 2007, 2(3): 368-374.
[15] XIE Bai-song, DU Shu-cheng. Solitons in relativistic laser-plasma interactions[J]. Front. Phys. , 2007, 2(2): 178-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed