|
|
SDE decomposition and A-type stochastic interpretation in nonequilibrium processes |
Ruoshi Yuan1, Ying Tang2, Ping Ao1( ) |
1. Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China 2. Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.
|
Keywords
nonequilibrium statistical physics
nonequilibrium potential
Lyapunov function
nonlinear stochastic dynamics
systems biology
|
Corresponding Author(s):
Ping Ao
|
Issue Date: 22 September 2017
|
|
1 |
S.Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in:D. F. Jones (Ed.) Proceedings of the Sixth International Congress of Genetics, Vol. 1, 356–366 (1932)
|
2 |
C. H.Waddington, The strategy of the genes: A discussion of some aspects of theoretical biology, New York: MacMillan Company, 1957
|
3 |
S. A.Kauffman, The Origins of Order: Self Organization and Selection in Evolution, New York: Oxford University Press, 1993
|
4 |
X. M.Zhu, L.Yin, L.Hood, and P.Ao, Calculating biological behaviors of epigenetic states in the phage λ life cycle, Funct. Integr. Genomics4(3), 188(2004)
https://doi.org/10.1007/s10142-003-0095-5
|
5 |
P.Ao, Global view of bionetwork dynamics: Adaptive landscape, J. Genet. Genomics36(2), 63(2009)
https://doi.org/10.1016/S1673-8527(08)60093-4
|
6 |
S.Huang, G.Eichler, Y.Bar-Yam, and D. E.Ingber, Cell fates as high-dimensional attractor states of a complex gene regulatory network, Phys. Rev. Lett. 94(12), 128701(2005)
https://doi.org/10.1103/PhysRevLett.94.128701
|
7 |
P.Ao, Potential in stochastic differential equations: Novel construction, J. Phys. Math. Gen. 37(3), L25(2004)
https://doi.org/10.1088/0305-4470/37/3/L01
|
8 |
R.Yuanand P.Ao, Beyond itô versus stratonovich, J. Stat. Mech. 2012(07), P07010(2012)
https://doi.org/10.1088/1742-5468/2012/07/P07010
|
9 |
M. I.Freidlinand A. D.Wentzell, Random Perturbations of Dynamical Systems, 3rd Ed., Berlin: Springer- Verlag, 2012
https://doi.org/10.1007/978-3-642-25847-3
|
10 |
J. X.Zhou, M. D. S.Aliyu, E.Aurell, and S.Huang, Quasi-potential landscape in complex multi-stable systems,J. R. Soc. Interface Online1–15(2012)
|
11 |
R.Yuan, Y. A.Ma, B.Yuan, and P.Ao, Lyapunov function as potential function: A dynamical equivalence, Chin. Phys. B23(1), 010505(2014)
https://doi.org/10.1088/1674-1056/23/1/010505
|
12 |
C.Lv, X.Li, F.Li, and T.Li, Constructing the energy landscape for genetic switching system driven by intrinsic noise, PLoS One9(2), e88167(2014)
https://doi.org/10.1371/journal.pone.0088167
|
13 |
D. K.Wells, W. L.Kath, and A. E.Motter, Control of stochastic and induced switching in biophysical networks, Phys. Rev. X5(3), 031036(2015)
https://doi.org/10.1103/PhysRevX.5.031036
|
14 |
P.Ao, D.Galas,L.Hood, and X. M.Zhu, Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution, Med. Hypotheses70(3), 678(2008)
https://doi.org/10.1016/j.mehy.2007.03.043
|
15 |
R.Yuan,X.Zhu, G.Wang, S.Li, and P.Ao, Cancer as robust intrinsic state shaped by evolution: A key issues review, Rep. Prog. Phys. 80(4), 042701(2017)
https://doi.org/10.1088/1361-6633/aa538e
|
16 |
Y.Tang, R.Yuan, G.Wang, X.Zhu, and P.Ao, Potential landscape of high dimensional nonlinear stochastic dynamics and rare transitions with large noise, arXiv: 1611.07140 (2016)
|
17 |
G. W.Wang, X. M.Zhu, J. R.Gu, and P.Ao, Quantitative implementation of the endogenous molecularcellular network hypothesis in hepatocellular carcinoma, Interface Focus4(3), 20130064(2014)
https://doi.org/10.1098/rsfs.2013.0064
|
18 |
X.Zhu, R.Yuan, L.Hood, and P.Ao, Endogenous molecular-cellular hierarchical modeling of prostate carcinogenesis uncovers robust structure, Prog. Biophys. Mol. Biol. 117(1), 30(2015)
https://doi.org/10.1016/j.pbiomolbio.2015.01.004
|
19 |
S.Li, X.Zhu, B.Liu, G.Wang, and P.Ao, Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer, Oncotarget6, 13607(2015)
https://doi.org/10.18632/oncotarget.3633
|
20 |
R.Yuan, X.Zhu, J. P.Radich, and P.Ao, From molecular interaction to acute promyelo-cytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network, Sci. Rep. 6(1), 24307(2016)
https://doi.org/10.1038/srep24307
|
21 |
P.Zhouand T.Li, Construction of the landscape for multi-stable systems: Potential landscape, quasipotential, a-type integral and beyond, J. Chem. Phys. 144(9), 094109(2016)
https://doi.org/10.1063/1.4943096
|
22 |
R.Yuan, Y.Tang, and P.Ao, Comment on “construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, a-type integral and beyond”, J. Chem. Phys. 145(14), 147104(2016) [J. Chem. Phys. 144, 094109(2016)]
https://doi.org/10.1063/1.4964681
|
23 |
C.Kwon, P.Ao, and D. J.Thouless, Structure of stochastic dynamics near fixed points, Proc. Natl Acad. Sci. USA102, 13029(2005)
https://doi.org/10.1073/pnas.0506347102
|
24 |
A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44, New York: Springer-Verlag, 2012
|
25 |
R.Kubo, M.Toda, and N.Hashitsume, Statistical Physics II: Nonequilibrium Statistical Physics, 2nd Ed., Heidelberg: Springer-Verlag, 1995
|
26 |
W. M.Haddadand V. S.Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach, Princeton: Princeton University Press, 2008
|
27 |
P.Ao, Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics, Commum. Theor. Phys. 49(5), 1073(2008)
https://doi.org/10.1088/0253-6102/49/5/01
|
28 |
L.Yinand P.Ao, Existence and construction of dynamical potential in nonequilibrium processes without detailed balance, J. Phys. A: Math. Gen. 39, 8593(2006)
https://doi.org/10.1088/0305-4470/39/27/003
|
29 |
H.Geand H.Qian, Landscapes of non-gradient dynamics without detailed balance: Stable limit cycles and multiple attractors, Chaos22(2), 023140(2012)
https://doi.org/10.1063/1.4729137
|
30 |
R.Yuan, X.Wang, Y.Ma, B.Yuan, and P.Ao, Exploring a noisy van der Pol type oscillator with a stochastic approach, Phys. Rev. E87(6), 062109(2013)
https://doi.org/10.1103/PhysRevE.87.062109
|
31 |
Y.Tang, R.Yuan, and Y.Ma, Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems, Phys. Rev. E87(1), 012708(2013)
https://doi.org/10.1103/PhysRevE.87.012708
|
32 |
Y. A.Ma, R.Yuan,Y.Li, B.Yuan, and P.Ao, Lyapunov functions in piecewise linear systems: From fixed point to limit cycle, arXiv: 1306.6880 (2013)
|
33 |
Y.Ma, Q.Tan, R.Yuan, B.Yuan, and P.Ao, Potential function in a continuous dissipative chaotic system: decomposition scheme and role of strange attractor, Int. J. Bifurcat. Chaos24(02), 1450015(2014)
https://doi.org/10.1142/S0218127414500151
|
34 |
S. H.Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd Ed., Boulder: Westview Press, 2015
|
35 |
P.Aoand J.Rammer, Influence of an environment on equilibrium properties of a charged quantum bead constrained to a ring, Superlattices Microstruct. 11(3), 265(1992)
https://doi.org/10.1016/0749-6036(92)90377-H
|
36 |
Y. C.Chen, M. P. A.Fisher, and A. J.Leggett, The return of a hysteretic Josephson junction to the zerovoltage state: I–Vcharacteristic and quantum retrapping, J. Appl. Phys. 64(6), 3119(1988)
https://doi.org/10.1063/1.341527
|
37 |
Y.Tang, R.Yuan, and P.Ao, Anomalous free energy changes induced by topology, Phys. Rev. E92(6), 062129(2015)
https://doi.org/10.1103/PhysRevE.92.062129
|
38 |
S.Xu, S.Jiao, P.Jiang, and P.Ao, Two-time-scale population evolution on a singular land-scape, Phys. Rev. E89(1), 012724(2014)
https://doi.org/10.1103/PhysRevE.89.012724
|
39 |
P.Ao, C.Kwon, and H.Qian, On the existence of potential landscape in the evolution of complex systems, Complexity12(4), 19(2007)
https://doi.org/10.1002/cplx.20171
|
40 |
H.Qian, P.Ao, Y.Tu, and J.Wang, A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales, Chem. Phys. Lett. 665(16), 153(2016)
https://doi.org/10.1016/j.cplett.2016.10.059
|
41 |
Y.Cao, H. M.Lu, and J.Liang, Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda, Proc. Natl. Acad. Sci. USA107(43), 18445(2010)
https://doi.org/10.1073/pnas.1001455107
|
42 |
M.Lu, J.Onuchic, and E.Ben-Jacob, Construction of an effective landscape for multistate genetic switches, Phys. Rev. Lett. 113(7), 078102(2014)
https://doi.org/10.1103/PhysRevLett.113.078102
|
43 |
H.Qian, The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping, Phys. Lett. A378(7–8), 609(2014)
https://doi.org/10.1016/j.physleta.2013.12.028
|
44 |
Y.Tang, R.Yuan, and P.Ao, Summing over trajectories of stochastic dynamics with multi-plicative noise, J. Chem. Phys. 141(4), 044125(2014)
https://doi.org/10.1063/1.4890968
|
45 |
P.Ao, T. Q.Chen, and J. H.Shi, Dynamical decomposition of Markov processes without detailed balance, Chin. Phys. Lett. 30(7), 070201(2013)
https://doi.org/10.1088/0256-307X/30/7/070201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|