Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 134202    https://doi.org/10.1007/s11467-017-0719-1
RESEARCH ARTICLE
Slow light effect with high group index and wideband by saddle-like mode in PC-CROW
Yong Wan1, Li-Jun Jiang2, Sheng Xu1, Meng-Xue Li1, Meng-Nan Liu1, Cheng-Yi Jiang1, Feng Yuan1()
1. College of Physics Science, Qingdao University, Qingdao 266071, China
2. Qingdao No. 2 Middle School of Shandong Province, Qingdao 266071, China
 Download: PDF(1413 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddlelike curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is>104, and the normalized delay bandwidth product within a new varying range of ng>102 or ng>103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

Keywords eye-shaped scatterer      slow light      photonic crystal      coupled-resonator optical waveguide     
Corresponding Author(s): Feng Yuan   
Issue Date: 08 December 2017
 Cite this article:   
Yong Wan,Li-Jun Jiang,Sheng Xu, et al. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW[J]. Front. Phys. , 2018, 13(2): 134202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0719-1
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/134202
1 R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, Slowlight optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23(12), 4046 (2005)
https://doi.org/10.1109/JLT.2005.853125
2 S. K. Tripathy, S. Sahu, C. Mohapatro, and S. P. Dash, Implementation of optical logic gates using closed packed 2D-photonic crystal structure, Opt. Commun. 285(13–14), 3234 (2012)
https://doi.org/10.1016/j.optcom.2012.02.082
3 K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Ultralow-energy and highcontrast all-optical switch involving Fano resonance based on coupled photonic crystal nanomicrocavities, Opt. Express 21(10), 11877 (2013)
https://doi.org/10.1364/OE.21.011877
4 Y. Wan, S. Ge, Y. Guo, and M. Yun, Application of 2D graded eye-shape scatterers for slow light effect in photonic crystal line-defect waveguide, Optik (Stuttg.) 125(5), 1605 (2014)
https://doi.org/10.1016/j.ijleo.2013.10.015
5 J. Chen, G. von Freymann, S. Choi, and G. Ozin, Amplified photochemistry with slow photons, Adv. Mater. 18(14), 1915 (2006)
https://doi.org/10.1002/adma.200600588
6 Z. Cai, Z. Xiong, X. Lu, and J. Teng, In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity, J. Mater. Chem. A 2(2), 545 (2014)
https://doi.org/10.1039/C3TA13878J
7 T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465 (2008)
https://doi.org/10.1038/nphoton.2008.146
8 A. C. Liapis, Optimizing photonic crystal waveguides for on-chip spectroscopic applications, Opt. Express 21(8), 10160 (2013)
https://doi.org/10.1364/OE.21.010160
9 S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, Dispersion engineered slow light in photonic crystal: A comparison, J. Opt. 12(10), 104004 (2010)
https://doi.org/10.1088/2040-8978/12/10/104004
10 A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupledresonator optical waveguide: A proposal and analysis, Opt. Lett. 24(11), 711 (1999)
https://doi.org/10.1364/OL.24.000711
11 K. Sakai, E. Miyai, and S. Noda, Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization, Opt. Express 15(7), 3981 (2007)
https://doi.org/10.1364/OE.15.003981
12 E. Waks and J. Vuckovic, Coupled mode theory for photonic crystal cavity-waveguide interaction, Opt. Express 13(13), 5064 (2005)
https://doi.org/10.1364/OPEX.13.005064
13 H. Tian, F. Long, W. Liu, and Y. Ji, Tunable slow light and buffer capability in photonic crystal coupledmicrocavity waveguides based on electro-optic effect, Opt. Commun. 285(10–11), 2760 (2012)
https://doi.org/10.1016/j.optcom.2012.01.086
14 K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)
https://doi.org/10.1103/PhysRevB.80.134305
15 K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)
https://doi.org/10.1364/OE.18.021155
16 N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanomicrocavity arrays, Opt. Lett. 39(8), 2290 (2014)
https://doi.org/10.1364/OL.39.002290
17 H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)
https://doi.org/10.1364/OE.20.007184
18 Y. Wan, Z. Cai, Q. Li, and X. S. Zhao, Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks, Appl. Phys. A 102(2), 373 (2011)
https://doi.org/10.1007/s00339-010-6012-6
19 Y. Wan, K. Fu, C. H. Li, and M. J. Yun, Improving slow light effect in photonic crystal line-defect waveguide by using eye-shaped scatterers, Opt. Commun. 286, 192 (2013)
https://doi.org/10.1016/j.optcom.2012.09.025
20 C. Li, R. Su, Y. Wang, and X. Zhang, Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide, Opt. Commun. 377, 10 (2016)
https://doi.org/10.1016/j.optcom.2016.05.034
21 N. Zhu, Y. Y. Li, C. C. Chen, and S. Yan, Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity, Opt. Laser Technol. 83, 125 (2016)
https://doi.org/10.1016/j.optlastec.2016.03.025
22 Y. Wan, X. Ge, S. Xu, Y. Guo, and F. Yuan, Ultra-slow light effects in symmetric and asymmetric waveguide structures with moon-like scatterers, Front. Phys. 12(1), 124204 (2017)
https://doi.org/10.1007/s11467-016-0598-x
[1] Yong Wan,Xiao-Hui Ge,Sheng Xu,Yue Guo,Feng Yuan. Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers[J]. Front. Phys. , 2017, 12(1): 124204-.
[2] Chun-Zhen Fan, Er-Jun Liang, Ji-Ping Huang. Optical properties of one-dimensional soft photonic crystals with ferrofluids[J]. Front. Phys. , 2013, 8(1): 1-19.
[3] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[4] Tian-rui ZHAI(翟天瑞), Da-he LIU(刘大禾), Xiang-dong ZHANG(张向东), . Photonic crystals and microlasers fabricated with low refractive index material[J]. Front. Phys. , 2010, 5(3): 266-276.
[5] Jing WANG(王静), Min YAN(严敏), Min QIU(仇旻), . Photonic crystal surface mode microcavities[J]. Front. Phys. , 2010, 5(3): 260-265.
[6] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
[7] Ye LIU(刘晔), Fei QIN(秦飞), Fei ZHOU(周飞), Qing-bo MENG(孟庆波), Dao-zhong ZHANG (张道中), Zhi-yuan LI (李志远), . Ultrafast optical switching in Kerr nonlinear photonic crystals[J]. Front. Phys. , 2010, 5(3): 220-244.
[8] ZHANG Xiang-dong. Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals[J]. Front. Phys. , 2006, 1(4): 396-404.
[9] LI Yan-feng, HU Ming-lie, CHAI Lu, WANG Ching-yue. Enhanced nonlinear effects in photonic crystal fibers[J]. Front. Phys. , 2006, 1(2): 160-170.
[10] GONG Qi-huang, HU Xiao-yong. Ultrafast photonic crystal optical switching[J]. Front. Phys. , 2006, 1(2): 171-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed