Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137501    https://doi.org/10.1007/s11467-017-0722-6
RESEARCH ARTICLE
AC-current-induced magnetization switching in amorphous microwires
V. Zhukova1,2, J. M. Blanco2, A. Chizhik1,2, M. Ipatov2, A. Zhukov1,2,3()
1. Dpto. Física Aplicada I, EUPDS, UPV/EHU, Plaza Europa 1, San Sebastián, 20018, Spain
2. Dpto. Física de Materiales, Facultad de Química, UPV/EHU, 1072, 20080, San Sebastián, Spain, and
3. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
 Download: PDF(835 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We studied the influence of AC current flowing through microwires, on magnetization dynamics. We used a previously developed Sixtus-Tonks modified setup to evaluate the domain wall (DW) velocity within the microwire. However, instead of a magnetizing solenoid, we used a current flowing through the microwire. We observed that the AC current flowing through the annealed Co-rich microwire leads to remagnetization by fast domain wall propagation. The estimated DW velocity was approximately 4.5 km/s, which is similar to and even higher than that reported for the magnetic-field-driven domain wall propagation in Fe- and Co-rich microwires. We measured the DW velocity under tensile stress, and found that the DW velocity decreases under applied stress. An observed DW propagation induced by the current flowing through the microwire is explained considering the influence of an Oersted magnetic field on the outer domain shell. This field has a circular easy magnetization direction and magnetostatic interaction between the outer circumferentially magnetized shell and the inner axially magnetized core.

Keywords domain wall propagation      magnetic microwire      amorphous material      magnetoelastic anisotropy     
Corresponding Author(s): A. Zhukov   
Issue Date: 19 January 2018
 Cite this article:   
V. Zhukova,J. M. Blanco,A. Chizhik, et al. AC-current-induced magnetization switching in amorphous microwires[J]. Front. Phys. , 2018, 13(2): 137501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0722-6
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137501
26 A. Zhukov, A. Chizhik, M. Ipatov, A. Talaat, J. M. Blanco, A. Stupakiewicz, and V. Zhukova, Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires, J. Appl. Phys. 117(4), 043904 (2015)
https://doi.org/10.1063/1.4906503
27 R. Varga, A. Zhukov, J. M. Blanco, M. Ipatov, V. Zhukova, J. Gonzalez, and P. Vojtaník, Fast magnetic domain wall in magnetic microwires, Phys. Rev. B 74(21), 212405 (2006)
https://doi.org/10.1103/PhysRevB.74.212405
28 A. Zhukov, Design of the magnetic properties of Fe-rich, glass-coated microwires for technical applications, Adv. Funct. Mater. 16(5), 675 (2006)
https://doi.org/10.1002/adfm.200500248
29 M. Vázquez and D. X. Chen, The magnetization reversal process in amorphous wires, IEEE Trans. Magn. 31(2), 1229 (1995)
https://doi.org/10.1109/20.364813
30 A. Zhukov, Domain wall propagation in a Fe-rich glasscoated amorphous microwire, Appl. Phys. Lett. 78(20), 3106 (2001)
https://doi.org/10.1063/1.1372342
31 N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy, J. Magn. Magn. Mater. 185(2), 159 (1998)
https://doi.org/10.1016/S0304-8853(97)01148-7
1 T. Ono, H. Miyajima, K. Mibu, N. Hosoito, and T. Shinjo, Propagation of a magnetic domain wall in a submicrometer magnetic wire, Science 284(5413), 468 (1999)
https://doi.org/10.1126/science.284.5413.468
2 D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Magnetic domain-wall logic, Science 309(5741), 1688 (2005)
https://doi.org/10.1126/science.1108813
32 S. A. Gudoshnikov, Yu. B. Grebenshchikov, B. Ya. Ljubimov, P. S. Palvanov, N. A. Usov, M. Ipatov, A. Zhukov, and J. Gonzalez, Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire, Phys. Status Solidi. A 206(4), 613 (2009)
https://doi.org/10.1002/pssa.200881254
33 L. V. Panina, M. Mizutani, K. Mohri, F. R. Humphrey, and L. Ogasawara, Dynamics and relaxation of large Barkhausen discontinuity in amorphous wires, IEEE Trans. Magn. 27(6), 5331 (1991)
https://doi.org/10.1109/20.278829
34 L. V. Panina, M. Ipatov, V. Zhukova, and A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires, Physica B 407(9), 1442 (2012)
https://doi.org/10.1016/j.physb.2011.06.047
35 D. X. Chen, N. M. Dempsey, M. Vázquez, and A. Hernando, Propagating domain wall shape and dynamics in iron-rich amorphous wires, IEEE Trans. Magn. 31(1), 781 (1995)
https://doi.org/10.1109/20.364597
36 P. M. Shepley, A. W. Rushforth, M. Wang, G. Burnell, and T. A. Moore, Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain, Sci. Rep. 5(1), 7921 (2015)
https://doi.org/10.1038/srep07921
37 A. Chizhik, V. Zablotskii, A. Stupakiewicz, C. Gómez-Polo, A. Maziewski, A. Zhukov, J. Gonzalez, and J. M. Blanco, Magnetization switching in ferromagnetic microwires, Phys. Rev. B 82(21), 212401 (2010)
https://doi.org/10.1103/PhysRevB.82.212401
3 K. J. Sixtus and L. Tonks, Propagation of large Barkhausen discontinuities (II), Phys. Rev. 42(3), 419 (1932)
https://doi.org/10.1103/PhysRev.42.419
4 A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials, New York: Academic Press, 1979
5 A. Kunz, Field induced domain wall collisions in thin magnetic nanowires, Appl. Phys. Lett. 94(13), 132502 (2009)
https://doi.org/10.1063/1.3112577
6 M. Hayashi, L. Thomas, Ch. Rettner, R. Moriya, X. Jiang, and S. Parkin, Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires, Phys. Rev. Lett. 97(20), 207205 (2006)
https://doi.org/10.1103/PhysRevLett.97.207205
7 V. Zhukova, A. F. Cobeño, A. Zhukov, J. M. Blanco, S. Puerta, J. Gonzalez, and M. Vázquez, Tailoring of magnetic properties of glass-coated microwires by current annealing, J. Non-Cryst. Solids 287(1–3), 31 (2001)
https://doi.org/10.1016/S0022-3093(01)00536-1
8 V. Zhukova, M. Ipatov, J. González, J. M. Blanco and A. P. Zhukov, Development of thin microwires with enhanced magnetic softness and GMI, IEEE Trans. Magn. 44(Part 2), 3958 (2008)
https://doi.org/10.1109/TMAG.2008.2002791
9 A. Vanhaverbeke, A. Bischof, and R. Allenspach, Control of domain wall polarity by current pulses, Phys. Rev. Lett. 101(10), 107202 (2008)
https://doi.org/10.1103/PhysRevLett.101.107202
10 J. Gonzalez, A. Chizhik, A. Zhukov, and J. M. Blanco, Surface magnetization reversal and magnetic domain structure in amorphous microwires, Phys. Status Solidi. A 208(3), 502 (2011)
https://doi.org/10.1002/pssa.201026332
11 V. Zhukova, N. A. Usov, A. Zhukov, and J. Gonzalez, Length effect in a Co-rich amorphous wire, Phys. Rev. B 65(13), 134407 (2002)
https://doi.org/10.1103/PhysRevB.65.134407
12 Yu. Kabanov, A. Zhukov, V. Zhukova, and J. Gonzalez, Magnetic domain structure of wires studied by using the magneto-optical indicator film method, Appl. Phys. Lett. 87(14), 142507 (2005)
https://doi.org/10.1063/1.2077854
13 J. N. Nderu, M. Takajo, J. Yamasaki, and F. B. Humphrey, Effect of stress on the bamboo domains and magnetization process of CoSiB amorphous wire, IEEE Trans. Magn. 34(4), 1312 (1998)
https://doi.org/10.1109/20.706532
14 A. Zhukov, J. M. Blanco, A. Chizhik, M. Ipatov, V. Rodionova, and V. Zhukova, Manipulation of domain wall dynamics in amorphous microwires through domain wall collision,J. Appl. Phys. 114(4), 043910 (2013)
https://doi.org/10.1063/1.4816560
15 H. Chiriac, T. A. Ovari, and M. Tibu, Domain wall propagation in nearly zero magnetostrictive amorphous microwires, IEEE Trans. Magn. 44(11), 3931 (2008)
https://doi.org/10.1109/TMAG.2008.2001326
16 V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, Domain wall propagation in micrometric wires: Limits of single domain wall regime, J. Appl. Phys. 111, 07E311 (2012)
17 M. Vázquez, G. A. Basheed, G. Infante, and R. P. Del Real, Trapping and injecting single domain walls in magnetic wire by local fields, Phys. Rev. Lett. 108(3), 037201 (2012)
https://doi.org/10.1103/PhysRevLett.108.037201
18 R. Gemperle, L. Kraus, and J. Schneider, Magnetization reversal in amorphous (Fe1−xNix)80P10B10microwires, J. Phys. B 28(10), 1138 (1978)
19 A. Zhukov, A. Talaat, M. Ipatov, J. M. Blanco, and V. Zhukova, Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment, J. Alloys Compd. 615, 610 (2014)
https://doi.org/10.1016/j.jallcom.2014.07.079
20 A. Talaat, M. Churyukanova, J. M. Blanco, M. Ipatov, V. Zhukova, and A. Zhukov, Simultaneous detection of giant magnetoimpedance and fast domain wall propagation in Co-based glass-coated microwires,IEEE Magn. Lett. 7, 5200604 (2016)
https://doi.org/10.1109/LMAG.2015.2505242
21 M. H. Phan and H. X. Peng, Giant magnetoimpedance materials: Fundamentals and applications, Prog. Mater. Sci. 53(2), 323 (2008)
https://doi.org/10.1016/j.pmatsci.2007.05.003
22 L. V. Panina and K. Mohri, Magneto‐impedance effect in amorphous wires, Appl. Phys. Lett. 65(9), 1189 (1994)
https://doi.org/10.1063/1.112104
23 A. Zhukov, M. Ipatov, and V. Zhukova, Advances in giant magnetoimpedance of materials, Handbook of Magnetic Materials, ed. K. H. J. Buschow, 24: Chapter 2, 139–236, 2015
24 T. Uchiyama, K. Mohri, and Sh. Nakayama, Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-Tesla resolution amorphous wire magneto-impedance sensor, IEEE Trans. Magn. 47(10), 3070 (2011)
https://doi.org/10.1109/TMAG.2011.2148165
25 M. Ipatov, V. Zhukova, J. Gonzalez, and A. Zhukov, Magnetoimpedance hysteresis in amorphous microwires induced by core–shell interaction, Appl. Phys. Lett. 105(12), 122401 (2014)
https://doi.org/10.1063/1.4896322
38 N. A. Usov and S. A. Gudoshnikov, Circular magnetization process in amorphous microwire with negative magnetostriction, J. Phys. D 49(16), 165001 (2016)
https://doi.org/10.1088/0022-3727/49/16/165001
39 N. Usov, A. Antonov, A. Dykhne, and A. Lagar’kov, Possible origin for the bamboo domain structure in Corich amorphous wire, J. Magn. Magn. Mater. 174(1–2), 127 (1997)
https://doi.org/10.1016/S0304-8853(97)00130-3
40 A. S. Antonov, V. T. Borisov, O. V. Borisov, A. F. Prokoshin, and N. A. Usov, Residual quenching stresses in glass-coated amorphous ferromagnetic microwires, J. Phys. D 33(10), 1161 (2000)
https://doi.org/10.1088/0022-3727/33/10/305
41 H. Chiriac, T. A. Óvári, and A. Zhukov, Magnetoelastic anisotropy of amorphous microwireS, J. Magn. Magn. Mater. 254–255, 469 (2003)
https://doi.org/10.1016/S0304-8853(02)00875-2
42 M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, and A. Zvezdin, Low-field hysteresis in the magnetoimpedance of amorphous microwires, Phys. Rev. B 81(13), 134421 (2010)
https://doi.org/10.1103/PhysRevB.81.134421
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed