|
|
Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation |
Xue-Rong Hu, Ji-Ming Zheng( ), Zhao-Yu Ren( ) |
Institute of Photonics & Photo-technology, National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069, China |
|
|
Abstract Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
|
Keywords
strong coupling
vdW heterostructure
DFT calculations
tight-binding Hamiltonian model
|
Corresponding Author(s):
Ji-Ming Zheng,Zhao-Yu Ren
|
Issue Date: 20 December 2017
|
|
1 |
C. J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, Tuning on-off current ratio and fieldeffect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation, ACS Nano 8(6), 5790 (2014)
https://doi.org/10.1021/nn500676t
|
2 |
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode, ACS Nano 8(8), 8292 (2014)
https://doi.org/10.1021/nn5027388
|
3 |
J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu, and C. H. Sow, Light–matter interactions in phosphorene, Acc. Chem. Res. 49(9), 1806 (2016)
https://doi.org/10.1021/acs.accounts.6b00266
|
4 |
J. Lu, A. Carvalho, J. Wu, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Enhanced photoresponse from phosphorene–phosphorene-suboxide junction fashioned by focused laser micromachining, Adv. Mater. 28, 4090 (2016)
https://doi.org/10.1002/adma.201506201
|
5 |
M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014)
https://doi.org/10.1021/nl501962c
|
6 |
A. Pakdel, Y. Bando, and D. Golberg, Nano boron nitride flatland, Chem. Soc. Rev. 43(3), 934 (2014)
https://doi.org/10.1039/C3CS60260E
|
7 |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
|
8 |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
|
9 |
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 289 (2014)
https://doi.org/10.1038/ncomms5458
|
10 |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
|
11 |
M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating, Nat. Commun. 5, 4651 (2014)
https://doi.org/10.1038/ncomms5651
|
12 |
V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layercontrolled band gap and anisotropic excitons in fewlayer black phosphorus, Phys. Rev. B 89(23), 235319 (2014)
https://doi.org/10.1103/PhysRevB.89.235319
|
13 |
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)
https://doi.org/10.1103/PhysRevLett.112.176801
|
14 |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
|
15 |
R. Ganatra and Q. Zhang, Few-layer MoS2: A promising layered semiconductor, ACS Nano 8(5), 4074 (2014)
https://doi.org/10.1021/nn405938z
|
16 |
J. O. Island, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Materials 2 (1), 011002 (2015)
|
17 |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
|
18 |
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
https://doi.org/10.1103/PhysRevLett.114.066803
|
19 |
T. Hu and J. Hong, Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures, ACS Appl. Mater. Interfaces 7(42), 23489 (2015)
https://doi.org/10.1021/acsami.5b05694
|
20 |
J. Lu, A. Carvalho, W. Jing, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Phosphorene: Enhanced photoresponse from phosphorene-phosphorenesuboxide junction fashioned by focused laser micromachining, Adv. Mater. 28(21), 4164 (2016)
https://doi.org/10.1002/adma.201670146
|
21 |
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, and W. Han, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed. 55(16), 5003 (2016)
https://doi.org/10.1002/anie.201512038
|
22 |
G. C. Guo, D. Wang, X. L. Wei, Q. Zhang, H. Liu, W. M. Lau, and L. M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett. 6(24), 5002 (2015)
https://doi.org/10.1021/acs.jpclett.5b02513
|
23 |
J. Dai and X. C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
https://doi.org/10.1021/jz500409m
|
24 |
L. Huang and J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure, Appl. Phys. Lett. 108(8), 083101 (2016)
https://doi.org/10.1063/1.4942368
|
25 |
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
https://doi.org/10.1073/pnas.1405435111
|
26 |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
27 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
28 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
29 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
30 |
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
|
31 |
Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)
https://doi.org/10.1021/acs.jpcc.5b02634
|
32 |
B. Sa, Y. L. Li, J. Qi, R. Ahuja, and Z. Sun, Strain engineering for phosphorene: The potential application as a photocatalyst, J. Phys. Chem. C 118(46), 26560 (2014)
https://doi.org/10.1021/jp508618t
|
33 |
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
https://doi.org/10.1021/nl500935z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|