Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 138101    https://doi.org/10.1007/s11467-018-0747-5
RESEARCH ARTICLE
Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption
Chen Yang1, Ying Chen1(), Dan Liu1, Jinfeng Wang1, Cheng Chen1, Jiemin Wang1, Ye Fan1, Shaoming Huang2, Weiwei Lei1()
1. Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
2. Nanomaterials & Chemistry Key Laboratory, Wenzhou University, Wenzhou 325035, China
 Download: PDF(5862 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Vertically aligned γ-AlOOH nanosheets (NSs) have been successfully fabricated on flexible Al foils via a solvothermal route without morphology-directing agents. Three different reaction temperature (25, 80, and 120 ?C) and time (30 min, 45 min, and 24 h) are discussed for the growth period, which efficiently tune the density and size of the γ-AlOOH NSs. Meanwhile, the growth speed of the nanosheets confirms that dominant growth stage is seen in the initial 45 min. Furthermore, the interlayer of the γ-AlOOH NSs displays an average height of 140 nm and superhydrophilicity. By dynamic adsorption, the assynthesized γ-AlOOH NSs exhibit an outstanding NH3 adsorption capacity of up to 146 mg/g and stably excellent regeneration for 5 cycles. The mechanism of NH3 adsorption on the in-plane of the γ-AlOOH NSs is explained by the Lewis acid/base theory. The H-bond interactions among the NH3 molecules and the edge groups (-OH) further improve the capture ability of the nanosheets.

Keywords γ-AlOOH nanosheets      NH3 adsorption      Lewis acid/base theory      H bonds interaction     
Corresponding Author(s): Ying Chen,Weiwei Lei   
Issue Date: 07 March 2018
 Cite this article:   
Chen Yang,Ying Chen,Dan Liu, et al. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0747-5
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/138101
1 A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous Mesoporous Mater. 218, 15 (2015)
https://doi.org/10.1016/j.micromeso.2015.06.030
2 J. B. DeCoste, M. S. Jr Denny, G. W. Peterson, J. J. Mahle, and S. M. Cohen, Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption, Chem. Sci. 7(4), 2711 (2016)
https://doi.org/10.1039/C5SC04368A
3 T. Yan, T. X. Li, R. Z. Wang, and R. Jia, Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes, Appl. Therm. Eng. 77, 20 (2015)
https://doi.org/10.1016/j.applthermaleng.2014.12.001
4 T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes, Int. J. Refrig. 46, 165 (2014)
https://doi.org/10.1016/j.ijrefrig.2014.02.014
5 M. Seredych, J. A. Rossin, and T. J. Bandosz, Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia, Carbon 49(13), 4392 (2011)
https://doi.org/10.1016/j.carbon.2011.06.032
6 Y. Chen, C. Y. Yang, X. Q. Wang, J. F. Yang, K. Ouyang, and J. P. Li, Kinetically controlled ammonia vapor diffusion synthesis of a Zn(ii) MOF and its H2O/NH3 adsorption properties, J. Mater. Chem. A 4(26), 10345 (2016)
https://doi.org/10.1039/C6TA03314H
7 D. P. Saha and S. G. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci. 348(2), 615 (2010)
https://doi.org/10.1016/j.jcis.2010.04.078
8 A. A. Halim, H. A. Aziz, M. A. M. Johari, and K. S. Ariffin, Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment, Desalination 262(1–3), 31 (2010)
https://doi.org/10.1016/j.desal.2010.05.036
9 D. Saha and S. G. Deng, Characteristics of ammonia adsorption on activated alumina, J. Chem. Eng. Data 55(12), 5587 (2010)
https://doi.org/10.1021/je100405k
10 D. Liu, W. W. Lei, S. Qin, K. D. Klika, and Y. Chen, Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets, Phys. Chem. Chem. Phys. 18(1), 84 (2016)
https://doi.org/10.1039/C5CP06399J
11 W. W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. W. Liu, L. M. Liu, Y. M. Ma, and Y. Chen, Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage,Nano Energy 6, 219 (2014)
https://doi.org/10.1016/j.nanoen.2014.04.004
12 C. Petit, L. L. Huang, J. Jagiello, J. Kenvin, K. E. Gubbins, and T. J. Bandosz, Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites, Langmuir 27(21), 13043 (2011)
https://doi.org/10.1021/la202924y
13 C. Petit and T. J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions, Adv. Funct. Mater. 20(1), 111 (2010)
https://doi.org/10.1002/adfm.200900880
14 C. Petit and T. J. Bandosz, Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: Exploring the limits of materials fabrication, Adv. Funct. Mater. 21(11), 2108 (2011)
https://doi.org/10.1002/adfm.201002517
15 S. Kang, J. Chun, N. Park, S. M. Lee, H. J. Kim, and S. U. Son, Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions, Chem. Commun. 51(59), 11814 (2015)
https://doi.org/10.1039/C5CC03470A
16 Y. Corre, M. Seredych, and T. J. Bandosz, Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites, Carbon 55, 176 (2013)
https://doi.org/10.1016/j.carbon.2012.12.024
17 G. C. Li, Y. Q. Liu, D. Liu, L. H. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant, Mater. Res. Bull. 45(10), 1487 (2010)
https://doi.org/10.1016/j.materresbull.2010.06.013
18 Z. B. Shi, W. Q. Jiao, L. Chen, P. Wu, Y. M. Wang, and M. Y. He, Clean synthesis of hierarchically structured boehmite and g-alumina with a flower-like morphology, Microporous Mesoporous Mater. 224, 253 (2016)
https://doi.org/10.1016/j.micromeso.2015.11.064
19 O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev, E. G. Khorobraya, and S. G. Psakhie, International Conference on Physical Mesomechanics of Multilevel Systems 2014, 1623, 35 (2014)
20 J. C. Xiao, H. H. Ji, Z. Q. Shen, W. Y. Yang, C. Y. Guo, S. J. Wang, X. W. Zhang, R. Fu, and F. X. Ling, Self-assembly of flower-like g-AlOOH and g-Al2O3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange, RSC Adv. 4(66), 35077 (2014)
https://doi.org/10.1039/C4RA05343E
21 A. S. Lozhkomoev, E. A. Glazkova, N. V. Svarovskaya, O. V. Bakina, S. O. Kazantsev, and M. I. Lerner, International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2015, 1683 (2015)
22 A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, M. I. Lerner, I. Gotman, E. Y. Gutmanas, S. O. Kazantsev, and S. G. Psakhie, Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water, Nanotechnology 27(20), 205603 (2016)
https://doi.org/10.1088/0957-4484/27/20/205603
23 Y. Y. Dong, Y. J. Liu, L. Y. Meng, B. Wang, M. G. Ma, and Y. Y. Li, Facile hydrothermal synthesis of Ag@AgCl@AlOOH hollow microspheres and their characterizations, Mater. Lett. 181, 204 (2016)
https://doi.org/10.1016/j.matlet.2016.06.027
24 S. L. Liu, C. Y. Chen, Q. P. Liu, Y. W. Zhuo, D. Yuan, Z. H. Dai, and J. C. Bao, Two-dimensional porous g- AlOOH and g-Al2O3 nanosheets: Hydrothermal synthesis, formation mechanism and catalytic performance, RSC Adv. 5(88), 71728 (2015)
https://doi.org/10.1039/C5RA09772J
25 L. Zhang, and Y. J. Zhu, Microwave-assisted Solvothermal Synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to g-Al2O3 with similar morphologies, J. Phys. Chem. C 112(43), 16764 (2008)
https://doi.org/10.1021/jp805751t
26 R. H. Sun, H. B. Zhang, J. Qu, H. Yao, J. Yao, and Z. Z. Yu, Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@reduced graphene oxide hybrids for efficient removal of fluoride ions, Chem. Eng. J. 292, 174 (2016)
https://doi.org/10.1016/j.cej.2016.02.008
27 R. Kumar, M. Ehsan, and M. A. Barakat, Synthesis and characterization of carbon/AlOOH composite for adsorption of chromium(VI) from synthetic wastewater, J. Ind. Eng. Chem. 20(6), 4202 (2014)
https://doi.org/10.1016/j.jiec.2014.01.021
28 R. Kumar, J. Rashid, and M. A. Barakat, Synthesis and characterization of a starch–AlOOH–FeS2 nanocomposite for the adsorption of congo red dye from aqueous solution, RSC Adv. 4(72), 38334 (2014)
https://doi.org/10.1039/C4RA05183A
29 J. R. Wen, M. H. Liu, and C. Y. Mou, Synthesis of curtain-like crumpled boehmite and g-alumina nanosheets, CrystEngComm 17(9), 1959 (2015)
https://doi.org/10.1039/C4CE02506G
30 Z. Tang, J. L. Liang, X. H. Li, J. F. Li, H. L. Guo, Y. Q. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (g- AlOOH) via a one-step ionic liquid-assisted hydrothermal route, J. Solid State Chem. 202, 305 (2013)
https://doi.org/10.1016/j.jssc.2013.03.049
31 G. J. Ji, M. M. Li, G. H. Li, G. M. Gao, H. F. Zou, S. C. Gan, and X. C. Xu, Hydrothermal synthesis of hierarchical micron flower-like g-AlOOH and g-Al2O3 superstructures from oil shale ash, Powder Technol. 215- 216, 54 (2012)
32 X. Y. Chen, H. S. Huh, and S. W. Lee, Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology 18, 285608 (2007)
https://doi.org/10.1088/0957-4484/18/28/285608
33 K. H. Hu, Y. K. Cai, G. Q. Shao, and X. L. Cui, Synthesis and photocatalytic properties of nano-MoS2/AlOOH composite, React. Kinet. Mech. Catal. 103(1), 153 (2011)
https://doi.org/10.1007/s11144-011-0294-3
34 J. X. Yang, J. J. Ma, and Y. W. Huang, Hydrothermal synthesis of monodisperse leaf-like boehmite nanosheets: Transformation from irregular to regular morphology, Frontier of Nanoscience and Technology, Vol. 694, 28 (2011)
https://doi.org/10.4028/www.scientific.net/MSF.694.28
35 Y. M. Sun, H. Wang, P. Li, X. Z. Duan, J. Xu, and Y. F. Han, Synthesis and identification of hierarchical g-AlOOH self-assembled by nanosheets with adjustable exposed facets, CrystEngComm 18(24), 4546 (2016)
https://doi.org/10.1039/C6CE00581K
36 G. C. Li, L. L. Guan, Y. Q. Liu, and C. G. Liu, Template-free solvothermal synthesis of 3D hierarchical nanostructured boehmite assembled by nanosheets, J. Phys. Chem. Solids 73(9), 1055 (2012)
https://doi.org/10.1016/j.jpcs.2012.04.014
37 Y. X. Zhang, Y. J. Ye, X. B. Zhou, Z. L. Liu, G. P. Zhu, D. C. Li, and X. H. Li, Monodispersed hollow aluminosilica microsphere@hierarchical g-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants, J. Mater. Chem. A 4(3), 838 (2016)
https://doi.org/10.1039/C5TA07919E
38 R. W. Hicks and T. J. Pinnavaia, Nanoparticle assembly of mesoporous AlOOH (Boehmite), Chem. Mater. 15(1), 78 (2003)
https://doi.org/10.1021/cm020753f
39 Y. Cai, H. H. Huang, L. Wang, X. J. Zhang, Y. W. Yuan, R. Li, H. Wan, and G. F. Guan, Facile synthesis of pure phase g-AlOOH and g-Al2O3 nanofibers in a recoverable ionic liquid via a low temperature route, RSC Adv. 5(127), 104884 (2015)
https://doi.org/10.1039/C5RA20230B
40 X. Y. Chen, Z. H. Zhang, X. L. Li, and S. W. Lee, Controlled hydrothermal synthesis of colloidal boehmite (-AlOOH) nanorods and nanoflakes and their conversion into- Al2O3 nanocrystals, Solid State Commun. 145(7–8), 368 (2008)
https://doi.org/10.1016/j.ssc.2007.11.033
41 S. Peng, X. J. Yang, D. Tian, and W. L. Deng, Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure, ACS Appl. Mater. Inter. 6(17), 15188 (2014)
https://doi.org/10.1021/am503441x
42 S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, and M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite, ACS Nano 8(6), 5622 (2014)
https://doi.org/10.1021/nn4065692
43 Z. Xu, J. Yu, J. Low, and M. Jaroniec, Microemulsionassisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde, ACS Appl. Mater. Inter. 6(3), 2111 (2014)
https://doi.org/10.1021/am405224u
44 Z. J. Wang, Y. Tian, H. S. Fan, J. H. Gong, S. G. Yang, J. H. Ma, and J. Xu, Facile seed-assisted hydrothermal fabrication of g-AlOOH nanoflake films with superhydrophobicity, New J. Chem. 38(3), 1321 (2014)
https://doi.org/10.1039/c3nj01323e
45 Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Iv, and X. F. Shang, One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route, Cryst. Growth Des. 8(4), 1426 (2008)
https://doi.org/10.1021/cg7007683
46 A. Alemi, Z. Hosseinpour, M. Dolatyari, and A. Bakhtiari, Boehmite (g-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations, Phys. Status Solidi B 249(6), 1264 (2012)
https://doi.org/10.1002/pssb.201147484
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed