Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (3) : 138106    https://doi.org/10.1007/s11467-018-0757-3
RESEARCH ARTICLE
Epitaxial growth of highly strained antimonene on Ag(111)
Ya-Hui Mao1,3, Li-Fu Zhang2,3, Hui-Li Wang2, Huan Shan1, Xiao-Fang Zhai1, Zhen-Peng Hu2(), Ai-Di Zhao1(), Bing Wang1
1. Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
2. School of Physics, Nankai University, Tianjin 300071, China
3. These authors contributed equally to this work.
 Download: PDF(4460 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synthesis of antimonene, which is a promising group-V 2D material for both fundamental studies and technological applications, remains highly challenging. Thus far, it has been synthesized only by exfoliation or growth on a few substrates. In this study, we show that thin layers of antimonene can be grown on Ag(111) by molecular beam epitaxy. High-resolution scanning tunneling microscopy combined with theoretical calculations revealed that the submonolayer Sb deposited on a Ag(111) surface forms a layer of AgSb2 surface alloy upon annealing. Further deposition of Sb on the AgSb2 surface alloy causes an epitaxial layer of Sb to form, which is identified as antimonene with a buckled honeycomb structure. More interestingly, the lattice constant of the epitaxial antimonene (5 Å) is much larger than that of freestanding antimonene, indicating a high tensile strain of more than 20%. This kind of large strain is expected to make the antimonene a highly promising candidate for roomtemperature quantum spin Hall material.

Keywords scanning tunneling microscope      antimonene      density functional theory     
Corresponding Author(s): Zhen-Peng Hu,Ai-Di Zhao   
Issue Date: 24 April 2018
 Cite this article:   
Ya-Hui Mao,Li-Fu Zhang,Hui-Li Wang, et al. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0757-3
https://academic.hep.com.cn/fop/EN/Y2018/V13/I3/138106
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 Z. Zhu and D. Tománek, Semiconducting layered blue phosphorus: A computational study, Phys. Rev. Lett. 112(17), 176802 (2014)
https://doi.org/10.1103/PhysRevLett.112.176802
3 S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. 127(10), 3155 (2015)
https://doi.org/10.1002/ange.201411246
4 L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, and X. Tang, Thermoelectric properties of a monolayer bismuth, J. Phys. Chem. C 118(2), 904 (2014)
https://doi.org/10.1021/jp411383j
5 S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
6 G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Performance of arsenene and antimonene double-gate MOSFETs from first principles, Nat. Commun. 7, 12585 (2016)
https://doi.org/10.1038/ncomms12585
7 X. P. Chen, Q. Yang, R. S. Meng, J. K. Jiang, Q. H. Liang, C. J. Tan, and X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures, J. Mater. Chem. C 4(23), 5434 (2016)
https://doi.org/10.1039/C6TC01141A
8 M. Zhao, X. Zhang, and L. Li, Strain-driven band inversion and topological aspects in antimonene, Sci. Rep. 5(1), 16108 (2015)
https://doi.org/10.1038/srep16108
9 F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
https://doi.org/10.1126/science.aai8142
10 P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, Antimonene: Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6515 (2016)
https://doi.org/10.1002/adma.201670209
11 C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
https://doi.org/10.1002/anie.201605298
12 J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
https://doi.org/10.1038/ncomms13352
13 X. Wu, Y. Shao, H. Liu, Z. Feng, Y. L. Wang, J. T. Sun, C. Liu, J. O. Wang, Z. L. Liu, S. Y. Zhu, Y. Q. Wang, S. X. Du, Y. G. Shi, K. Ibrahim, and H. J. Gao, Epitaxial growth and air-stability of monolayer antimonene on PdTe2, Adv. Mater. 29(11), 1605407 (2017)
https://doi.org/10.1002/adma.201605407
14 M. Fortin-Deschênes, O. Waller, T. O. Menteş, A. Locatelli, S. Mukherjee, F. Genuzio, P. L. Levesque, A. Hébert, R. Martel, and O. Moutanabbir, Synthesis of antimonene on germanium, Nano Lett. 17(8), 4970 (2017)
https://doi.org/10.1021/acs.nanolett.7b02111
15 G. Kresse and J. Hafner, Ab initio molecular dynamics of liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
16 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
17 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
18 T. C. Q. Noakes, D. A. Hutt, C. F. McConville, and D. P. Woodruff, Structural investigation of ordered Sb adsorption phases on Ag(111) using coaxial impact collision ion scattering spectroscopy, Surf. Sci. 372(1–3), 117 (1997)
https://doi.org/10.1016/S0039-6028(96)01139-9
19 L. Moreschini, A. Bendounan, I. Gierz, C. R. Ast, H. Mirhosseini, H. Höchst, K. Kern, J. Henk, A. Ernst, S. Ostanin, F. Reinert, and M. Grioni, Assessing the atomic contribution to the Rashba spin-orbit splitting in surface alloys: Sb/Ag(111), Phys. Rev. B 79(7), 075424 (2009)
https://doi.org/10.1103/PhysRevB.79.075424
20 I. Gierz, B. Stadtmüller, J. Vuorinen, M. Lindroos, F. Meier, J. H. Dil, K. Kern, and C. R. Ast, Structural influence on the Rashba-type spin splitting in surface alloys, Phys. Rev. B 81(24), 245430 (2010)
https://doi.org/10.1103/PhysRevB.81.245430
21 G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
https://doi.org/10.1021/acsami.5b02441
22 L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, Structural and electronic properties of layered arsenic and antimony arsenide, J. Phys. Chem. C 119(12), 6918 (2015)
https://doi.org/10.1021/acs.jpcc.5b02096
23 J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio and G. L. Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018)
[1] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[2] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[3] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[4] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[5] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[6] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[7] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[8] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[9] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
[10] Juan Ren,Ning-Chao Zhang,Peng Wang,Chao Ning,Hong Zhang,Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs[J]. Front. Phys. , 2016, 11(2): 118101-.
[11] Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb[J]. Front. Phys. , 2015, 10(4): 107101-.
[12] Zhao-Xi Li(李兆玺), Zhen-Hua Zhang(张振华), Peng-Wei Zhao(赵鹏巍). Shape coexistence and α-decay chains of 293Lv[J]. Front. Phys. , 2015, 10(3): 102101-.
[13] Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures[J]. Front. Phys. , 2015, 10(1): 103101-.
[14] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
[15] Qian-Shun Zhang (张前顺), Zhong-Ming Niu (牛中明), Zhi-Pan Li (李志攀), Jiang-Ming Yao (尧江明), Jie Meng (孟杰). Global dynamical correlation energies in covariant density functional theory: Cranking approximation[J]. Front. Phys. , 2014, 9(4): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed