Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (3) : 138103    https://doi.org/10.1007/s11467-018-0759-1
RESEARCH ARTICLE
Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures
Hao Yuan, Zhenyu Li()
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(11277 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zrn+1CnT2, T= O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zrn+1CnT2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

Keywords BP/MXene      Schottky barrier      type-II band alignment     
Corresponding Author(s): Zhenyu Li   
Issue Date: 20 March 2018
 Cite this article:   
Hao Yuan,Zhenyu Li. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures[J]. Front. Phys. , 2018, 13(3): 138103.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0759-1
https://academic.hep.com.cn/fop/EN/Y2018/V13/I3/138103
1 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
2 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
3 S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)
https://doi.org/10.1021/nl5025535
4 Y. Pan, Y. Wang, M. Ye, R. Quhe, H. Zhong, Z. Song, X. Peng, D. Yu, J. Yang, J. Shi, and J. Lu, Monolayer phosphorene–metal contacts, Chem. Mater. 28(7), 2100 (2016)
https://doi.org/10.1021/acs.chemmater.5b04899
5 R. Quhe, Y. Wang, M. Ye, Q. Zhang, J. Yang, P. Lu, M. Lei, and J. Lu, Black phosphorus transistors with van der Waals-type electrical contacts, Nanoscale 9(37), 14047 (2017)
https://doi.org/10.1039/C7NR03941G
6 J. E. Padilha, A. Fazzio, and A. J. R. da Silva, van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
https://doi.org/10.1103/PhysRevLett.114.066803
7 S. Y. Lee, W. S. Yun, and J. D. Lee, New method to determine the Schottky barrier in few-layer black phosphorus metal contacts, ACS Appl. Mater. Interfaces 9(8), 7873 (2017)
https://doi.org/10.1021/acsami.7b00357
8 M. Farmanbar and G. Brocks, Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer, Phys. Rev. B 91(16), 161304 (2015)
https://doi.org/10.1103/PhysRevB.91.161304
9 T. Musso, P. V. Kumar, A. S. Foster, and J. C. Grossman, Graphene oxide as a promising hole injection layer for MoS2-based electronic devices, ACS Nano 8(11), 11432 (2014)
https://doi.org/10.1021/nn504507u
10 S. McDonnell, A. Azcatl, R. Addou, C. Gong, C. Battaglia, S. Chuang, K. Cho, A. Javey, and R. M. Wallace, Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments, ACS Nano 8(6), 6265 (2014)
https://doi.org/10.1021/nn501728w
11 L. Huang, B. Li, M. Zhong, Z. Wei, and J. Li, Tunable Schottky barrier at MoSe2/metal interfaces with a buffer layer, J. Phys. Chem. C 121(17), 9305 (2017)
https://doi.org/10.1021/acs.jpcc.7b00383
12 Y. Liu, P. Stradins, and S. H. Wei, Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier, Sci. Adv. 2(4), e1600069 (2016)
https://doi.org/10.1126/sciadv.1600069
13 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
14 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
15 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)
https://doi.org/10.1021/nn204153h
16 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135(43), 15966 (2013)
https://doi.org/10.1021/ja405735d
17 J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai, and Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano 11(4), 3841 (2017)
https://doi.org/10.1021/acsnano.7b00030
18 X. H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J. S. Francisco, K. Luo, and S. Du, Promising electron mobility and high thermal conductivity in Sc2CT2 (T= F, OH) MXenes, Nanoscale 8(11), 6110 (2016)
https://doi.org/10.1039/C5NR08639F
19 X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons, Nanoscale 7(38), 16020 (2015)
https://doi.org/10.1039/C5NR04717J
20 Z. Guo, J. Zhou, L. Zhu, and Z. Sun, MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A 4(29), 11446 (2016)
https://doi.org/10.1039/C6TA04414J
21 M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)
https://doi.org/10.1002/adfm.201202502
22 J. Xu, J. Shim, J.H. Park, and S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors, Adv. Funct. Mater. 26(29), 5328 (2016)
https://doi.org/10.1002/adfm.201600771
23 Y. Liu, H. Xiao, and W. A. III Goddard, Schottkybarrier- free contacts with two-dimensional semiconductors by surface-engineered MXenes, J. Am. Chem. Soc. 138(49), 15853 (2016)
https://doi.org/10.1021/jacs.6b10834
24 Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)
https://doi.org/10.1021/acs.jpcc.5b02634
25 Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode, ACS Nano 8(8), 8292 (2014)
https://doi.org/10.1021/nn5027388
26 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
27 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
28 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
29 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
30 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
31 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
32 J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
33 J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett. 52(6), 465 (1984)
https://doi.org/10.1103/PhysRevLett.52.465
34 J. Tersoff, Theory of semiconductor heterojunctions: The role of quantum dipoles, Phys. Rev. B 30(8), 4874 (1984)
https://doi.org/10.1103/PhysRevB.30.4874
35 C. A. Mead and W. G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134(3A), A713 (1964)
https://doi.org/10.1103/PhysRev.134.A713
36 Y. Pan, Y. Dan, Y. Wang, M. Ye, H. Zhang, R. Quhe, X. Zhang, J. Li, W. Guo, L. Yang, and J. Lu, Schottky barriers in bilayer phosphorene transistors, ACS Appl. Mater. Interfaces 9(14), 12694 (2017)
https://doi.org/10.1021/acsami.6b16826
37 X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang, Y. Guo, H. Zhang, Y. Dan, Z. Song, J. Li, J. Yang, W. Guo, and J. Lu, Three-layer phosphorene-metal interfaces, Nano Res. 11(2), 707 (2018)
https://doi.org/10.1007/s12274-017-1680-6
38 M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, and S. Yunoki, OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials, Phys. Rev. B 92(7), 075411 (2015)
https://doi.org/10.1103/PhysRevB.92.075411
39 Y. Wang, R. X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, and J. Lu, Does p-type ohmic contact exist in WSe2–metal interfaces? Nanoscale 8(2), 1179 (2016)
https://doi.org/10.1039/C5NR06204G
40 G. H. Lee, S. Kim, S. H. Jhi, and H. J. Lee, Ultimately short ballistic vertical graphene Josephson junctions, Nat. Commun. 6(1), 6181 (2015)
https://doi.org/10.1038/ncomms7181
41 X. Ji, J. Zhang, Y. Wang, H. Qian, and Z. Yu, A theoretical model for metal–graphene contact resistance using a DFT–NEGF method, Phys. Chem. Chem. Phys. 15(41), 17883 (2013)
https://doi.org/10.1039/c3cp52589a
42 Y. Cai, G. Zhang, and Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep. 4(1), 6677 (2015)
https://doi.org/10.1038/srep06677
43 J. Y. Marzin, M. N. Charasse, and B. Sermage, Optical investigation of a new type of valence-band configuration in InxGa1−xAs-GaAs strained superlattices, Phys. Rev. B 31(12), 8298 (1985)
https://doi.org/10.1103/PhysRevB.31.8298
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed