|
|
Multi-hop teleportation in a quantum network based on mesh topology |
Xiao-Qin Gao, Zai-Chen Zhang( ), Bin Sheng |
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China |
|
|
Abstract In this paper, we propose a mesh-topology-based multi-hop teleportation scheme for a quantum network. By using the proposed scheme, quantum communication can be realized between two arbitrary nodes, even when they do not share a direct quantum channel. Einstein–Podolsky–Rosen pairs are used as quantum channels. The source node (initial sender) and all intermediate nodes make Bell measurements independently. They send the results to the destination node (final receiver) by classical channels. The quantum state can be determined from the Bell measurement result, and only the destination node is required for simple unitary transformation. This method of simultaneous measurement contributes significantly to quantum network by reducing the hop-by-hop transmission delay.
|
Keywords
multi-hop teleportation
quantum network
mesh topology
|
Corresponding Author(s):
Zai-Chen Zhang
|
Issue Date: 08 June 2018
|
|
1 |
I. F. Akyildiz, X. D. Wang, and W. L. Wang, Wireless mesh networks: A survey, Comput. Netw. 47(4), 445 (2005)
https://doi.org/10.1016/j.comnet.2004.12.001
|
2 |
I. F. Akyildiz and X. D. Wang, A survey on wireless mesh networks, IEEE Communications Magazine 43(S), S23 (2005)
|
3 |
Y. Cao, X. T. Yu, and Y. X. Cai, Wireless Quantum Communication Networks with Mesh Structure, Third International Conference on Information Science and Technology, 1485 (2013)
|
4 |
P. Y. Xiong, X. T. Yu, Z. C. Zhang, H. T. Zhan, and J. Y. Hua, Routing protocol for wireless quantum multihop mesh backbone network based on partially entangled GHZ state, Front. Phys. 12(4), 120302 (2017)
https://doi.org/10.1007/s11467-016-0617-y
|
5 |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
6 |
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
|
7 |
K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
https://doi.org/10.1103/PhysRevA.89.022329
|
8 |
H. T. Zhan, X. T. Yu, P. Y. Xiong, and Z. C. Zhang, Multi-hop teleportation based on W state and EPR pairs, Chin. Phys. B 25(5), 050305 (2016)
https://doi.org/10.1088/1674-1056/25/5/050305
|
9 |
Z. Z. Zou, X. T. Yu, Y. X. Gong, and Z. C. Zhang, Multihop teleportation of two-qubit state via the composite GHZ–Bell channel, Phys. Lett. A 381(2), 76 (2017)
https://doi.org/10.1016/j.physleta.2016.10.048
|
10 |
Z. Y. Guo, X. X. Shang, J. X. Fang, and R. H. Xiao, Controlled teleportation of an arbitrary two-particle state by one EPR pair and cluster state, Commum. Theor. Phys. 56(5), 819 (2011)
https://doi.org/10.1088/0253-6102/56/5/05
|
11 |
F. L. Yan and G. H. Zhang, Remote preparation of the two-particle state, Int. J. Quant. Inf. 06(03), 485 (2008)
https://doi.org/10.1142/S0219749908003669
|
12 |
Z. L. Cao and W. Song, Teleportation of a two-particle entangled state via W class states, Physica A 347, 177 (2005)
https://doi.org/10.1016/j.physa.2004.08.033
|
13 |
H. Y. Dai, P. X. Chen, and C. Z. Li, Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state, Opt. Commun. 231(1–6), 281 (2004)
https://doi.org/10.1016/j.optcom.2003.11.074
|
14 |
M. Cao, S. Q. Zhu, and J. X. Fang, Teleportation of n-particle state via n pairs of EPR channels, Commum. Theor. Phys. 41(5), 689 (2004)
https://doi.org/10.1088/0253-6102/41/5/689
|
15 |
F. L. Yan and X. Q. Zhang, A scheme for secure direct communication using EPR pairs and teleportation, Eur. Phys. J. B 41(1), 75 (2004)
https://doi.org/10.1140/epjb/e2004-00296-4
|
16 |
S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, Long distance, unconditional teleportation of atomic states via complete Bell state measurements, Phys. Rev. Lett. 87(16), 167903 (2001)
https://doi.org/10.1103/PhysRevLett.87.167903
|
17 |
S. L. Braunstein, and A. Mann, Measuremnent of the Bell operator and quantum teleportation, Phys. Rev. A 51(3), R1727 (1995)
https://doi.org/10.1103/PhysRevA.51.R1727
|
18 |
N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Bell measurements for teleportation, Phys. Rev. A 59(5), 3295 (1999)
https://doi.org/10.1103/PhysRevA.59.3295
|
19 |
Y. H. Kim, S. P. Kulik, and Y. Shih, Quantum teleportation of a polarization state with a complete Bell state measurement, Phys. Rev. Lett. 86(7), 1370 (2001)
https://doi.org/10.1103/PhysRevLett.86.1370
|
20 |
X. Q. Gao, Z. C. Zhang, Y. X. Gong, B. Sheng, and X. T. Yu, Teleportation of entanglement using a threeparticle entangled W state, J. Opt. Soc. Am. B 34(1), 142 (2017)
https://doi.org/10.1364/JOSAB.34.000142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|