Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 137305    https://doi.org/10.1007/s11467-018-0786-y
RESEARCH ARTICLE
Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides
Zi-Wu Wang(), Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300354, China
 Download: PDF(2822 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We theoretically study the temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides using the O′Donnell equation, Eg(T)=Eg(0)Sw[coth?w2kBT1]. We develop a theoretical model for the quantitative estimation of the Huang–Rhys factor S and average phonon energy w based on exciton coupling with longitudinal optical and acoustic phonons in the Fröhlich and deformation potential mechanisms, respectively. We present reasonable explanations for the fitted values of the Huang–Rhys factor and average phonon energy adopted in experiments. Comparison with experimental results reveals that the temperature dependence of the peak position in the excitonic spectra can be well reproduced by modulating the polarization parameter and deformation potential constant.

Keywords transition metal dichalcogenides      exciton      Huang–Rhys factor     
Corresponding Author(s): Zi-Wu Wang   
Issue Date: 26 April 2018
 Cite this article:   
Zi-Wu Wang,Run-Ze Li,Xi-Ying Dong, et al. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides[J]. Front. Phys. , 2018, 13(4): 137305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0786-y
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/137305
1 H. Y. Yu, X. D. Cui, X. D. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
https://doi.org/10.1093/nsr/nwu078
2 A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides, Springer Series in Materials Science 239, 321 (2016)
https://doi.org/10.1007/978-3-319-31450-1_9
3 S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)
https://doi.org/10.1021/nl302584w
4 J. S. Ross, S. F. Wu, H. Y. Yu, N J. Ghimire, A. M. Jones, G. Aivazian, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature Commun. 4, 1474 (2013)
https://doi.org/10.1038/ncomms2498
5 A. P. S. Gaur, S. Sahoo, J. F. Scott, and R. S. Katiyar, Electron–phonon interaction and double-resonance raman studies in monolayer WS2, J. Phys. Chem. C 119(9), 5146 (2015)
https://doi.org/10.1021/jp512540u
6 A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Excitonic resonances in thin films of WSe2: From monolayer to bulk material, Nanoscale 7(23), 10421 (2015)
https://doi.org/10.1039/C5NR01536G
7 A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire, Phys. Rev. B 93(16), 165412 (2016)
https://doi.org/10.1103/PhysRevB.93.165412
8 P. Dey, J. Paul, Z. Wang, C. E. Stevens, C. Liu, A. H. Romero, J. Shan, D. J. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)
https://doi.org/10.1103/PhysRevLett.116.127402
9 J. W. Christopher, B. B. Goldberg, and A. K. Swan, Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra, Sci. Rep. 7(1), 14062 (2017)
https://doi.org/10.1038/s41598-017-14378-w
10 K. P. O’Donnell and X. Chen, Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58(25), 2924 (1991)
https://doi.org/10.1063/1.104723
11 K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113(2), 026803 (2014)
https://doi.org/10.1103/PhysRevLett.113.026803
12 A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
https://doi.org/10.1103/PhysRevLett.113.076802
13 T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Simple screened hydrogen model of excitons in twodimensional materials, Phys. Rev. Lett. 116(5), 056401 (2016)
https://doi.org/10.1103/PhysRevLett.116.056401
14 K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)
https://doi.org/10.1103/PhysRevB.85.115317
15 K. Kaasbjerg, K. S. Bhargavi, and S. S. Kubakaddi, Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides, Phys. Rev. B 90(16), 165436 (2014)
https://doi.org/10.1103/PhysRevB.90.165436
16 A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86(11), 115409 (2012)
https://doi.org/10.1103/PhysRevB.86.115409
17 A. Thilagam, Ultrafast exciton relaxation in monolayer transition metal dichalcogenides, J. Appl. Phys. 119(16), 164306 (2016)
https://doi.org/10.1063/1.4947447
18 A. Thilagam, Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides, J. Appl. Phys. 120(12), 124306 (2016)
https://doi.org/10.1063/1.4963123
19 M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Phys. Rev. B 42(17), 11123 (1990)
https://doi.org/10.1103/PhysRevB.42.11123
20 T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94(8), 085415 (2016)
https://doi.org/10.1103/PhysRevB.94.085415
21 C. Jin, J. Kim, J. Suh, Z. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Q. Wu, and F. Wang, Interlayer electron-phonon coupling in WSe2/hBN heterostructures, Nat. Phys. 13, 127 (2017)
22 C. M. Chow, H. Y. Yu, A. M. Jones, J. Q. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. D. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)
https://doi.org/10.1021/acs.nanolett.6b04944
[1] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[2] Cheng-Bing Qin, Xi-Long Liang, Shuang-Ping Han, Guo-Feng Zhang, Rui-Yun Chen, Jian-Yong Hu, Lian-Tuan Xiao, Suo-Tang Jia. Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation[J]. Front. Phys. , 2021, 16(1): 12501-.
[3] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[4] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[5] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[6] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
[7] Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient[J]. Front. Phys. , 2013, 8(5): 509-515.
[8] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[9] PANG Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)[J]. Front. Phys. , 2008, 3(4): 457-488.
[10] PANG Xiao-feng. Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications ( I )[J]. Front. Phys. , 2007, 2(4): 469-493.
[11] SHAN Guang-cun, BAO Shu-ying, HUANG Wei. Another model for a multiexcitonic quantum dot in an optical microcavity[J]. Front. Phys. , 2007, 2(1): 63-67.
[12] LIU Can-de, LIU Wen, SU Xi-yu, LI Feng-ling, WU Da-peng. Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot[J]. Front. Phys. , 2006, 1(2): 238-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed