Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 135203    https://doi.org/10.1007/s11467-018-0793-z
RESEARCH ARTICLE
Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems
Peifeng Fan1,2, Hong Qin3,4,5(), Jian Liu3, Nong Xiang1,4, Zhi Yu1,4
1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China
3. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
4. Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China
5. Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
 Download: PDF(192 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is developed. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., spacetime is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles’ world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler–Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.

Keywords relativistic particle-field system      different manifolds      mass-shell constraint      geometric weak Euler–Lagrange equation      symmetry      conservation laws     
Corresponding Author(s): Hong Qin   
Issue Date: 25 May 2018
 Cite this article:   
Peifeng Fan,Hong Qin,Jian Liu, et al. Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems[J]. Front. Phys. , 2018, 13(4): 135203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0793-z
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/135203
1 E. Noether, Invariante Variationsprobleme, Nachr. König. Gesell. Wiss. Göttingen, Math.-Phys. Kl. 235–257 (1918); also available in English at Transport Theory Statist. Phys. 1, 186–207 (1971)
2 P. J. Olver, Applications of Lie Groups to Differential Equations, New York: Springer-Verlag, 1993, pp 242–283
https://doi.org/10.1007/978-1-4612-4350-2_4
3 C. Markakis, K. Uryū, E. Gourgoulhon, J. P. Nicolas, N. Andersson, A. Pouri, and V. Witzany, Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows, Phys. Rev. D 96(6), 064019 (2017)
https://doi.org/10.1103/PhysRevD.96.064019
4 R. M. Wald, General Relativity, Chicago and London: The University of Chicago Press, 1984, pp 23–27
https://doi.org/10.7208/chicago/9780226870373.001.0001
5 H. Qin, R. H. Cohen, W. M. Nevins, and X. Q. Xu, Geometric gyrokinetic theory for edge plasmas, Phys. Plasmas 14(5), 056110 (2007)
https://doi.org/10.1063/1.2472596
6 L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Oxford: Butterworth-Heinemann, 1975, pp 46–89
7 T. D. Brennan and S. E. Gralla, On the magnetosphere of an accelerated pulsar, Phys. Rev. D 89(10), 103013 (2014)
https://doi.org/10.1103/PhysRevD.89.103013
8 F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93(8), 085013 (2016)
https://doi.org/10.1103/PhysRevD.93.085013
9 J. Yu, Q. Ma, V. Motto-Ros, W. Lei, X. Wang, and X. Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front. Phys. 7(6), 649 (2012)
https://doi.org/10.1007/s11467-012-0251-2
10 Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)
https://doi.org/10.1007/s11467-013-0406-9
11 J. Zhu, K. Zhu, L. Tao, X. Xu, C. Lin, W. Ma, H. Lu, Y. Zhao, Y. Lu, J. Chen, and X. Yan, Distribution uniformity of laser-accelerated proton beams, Chin. Phys. C 41(9), 097001 (2017)
https://doi.org/10.1088/1674-1137/41/9/097001
12 M. Fathi, A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star, Chin. Phys. C 37(2), 025101 (2013)
https://doi.org/10.1088/1674-1137/37/2/025101
13 H. Qin, J. W. Burby, and R. C. Davidson, Field theory and weak Euler-Lagrange equation for classical particlefield systems, Phys. Rev. E 90(4), 043102 (2014)
https://doi.org/10.1103/PhysRevE.90.043102
14 L. Infeld, Bull. Acad. Pol. Sci. 5, 491 (1957); also available in the book: Asim O. Barut, Electrodynamics and Classical Theory of Fields & Particles, New York: Dover Publication, INC, 1980, pp 65–66
15 R. Hakim, Remarks on relativistic statistical mechanics (I), J. Math. Phys. 8(6), 1315 (1967)
https://doi.org/10.1063/1.1705347
16 R. Hakim, Remarks on relativistic statistical mechanics (II): Hierarchies for the Reduced Densities, J. Math. Phys. 8(7), 1379 (1967)
https://doi.org/10.1063/1.1705351
17 M. Gedalin, Covariant relativistic hydrodynamics of multispecies plasma and generalized Ohm’s law, Phys. Rev. Lett. 76(18), 3340 (1996)
https://doi.org/10.1103/PhysRevLett.76.3340
18 G. Hornig, The covariant transport of electromagnetic fields and its relation to magnetohydrodynamics, Phys. Plasmas 4(3), 646 (1997)
https://doi.org/10.1063/1.872161
19 K. C. Baral and J. N. Mohanty, Covariant formulation of the Fokker–Planck equation for moderately coupled relativistic magnetoplasma, Phys. Plasmas 7(4), 1103 (2000)
https://doi.org/10.1063/1.873918
20 C. Tian, Manifestly covariant classical correlation dynamics (I): General theory, Ann. Phys. 18(10–11), 783 (2009)
https://doi.org/10.1002/andp.200910370
21 C. Tian, Manifestly covariant classical correlation dynamics (II): Transport equations and Hakim equilibrium conjecture, Ann. Phys. 19(1–2), 75 (2010)
https://doi.org/10.1002/andp.200910404
22 E. D’Avignon, P. J. Morrison, and F. Pegoraro, Action principle for relativistic magnetohydrodynamics, Phys. Rev. D 91(8), 084050 (2015)
https://doi.org/10.1103/PhysRevD.91.084050
23 S. Yang and X. Wang, On Lorentz invariants in relativistic magnetic reconnection, Phys. Plasmas 23(8), 082903 (2016)
https://doi.org/10.1063/1.4961431
24 Y. Wang, J. Liu, and H. Qin, Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Phys. Plasmas 23(12), 122513 (2016)
https://doi.org/10.1063/1.4972824
25 Y. Shi, N. J. Fisch, and H. Qin, Effective-action approach to wave propagation in scalar QED plasmas, Phys. Rev. A 94(1), 012124 (2016)
https://doi.org/10.1103/PhysRevA.94.012124
26 D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137(1), 1 (1998)
https://doi.org/10.1006/aima.1998.1721
27 J. Squire, H. Qin, W. M. Tang, and C. Chandre, The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems, Phys. Plasmas 20(2), 022501 (2013)
https://doi.org/10.1063/1.4791664
28 Y. Zhou, H. Qin, J. W. Burby, and A. Bhattacharjee, Variational integration for ideal magnetohydrodynamics with built-in advection equations, Phys. Plasmas 21(10), 102109 (2014)
https://doi.org/10.1063/1.4897372
29 Z. Zhou, Y. He, Y. Sun, J. Liu, and H. Qin, Explicit symplectic methods for solving charged particle trajectories, Phys. Plasmas 24(5), 052507 (2017)
https://doi.org/10.1063/1.4982743
30 J. Squire, H. Qin, and W. M. Tang, Gauge properties of the guiding center variational symplectic integrator, Phys. Plasmas 19(5), 052501 (2012)
https://doi.org/10.1063/1.4714608
31 J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, and Y. Sun, Explicit high-order non-canonical symplectic particlein- cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22(11), 112504 (2015)
https://doi.org/10.1063/1.4935904
32 H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. W. Burby, L. Ellison, and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations, Nucl. Fusion 56(1), 014001 (2016)
https://doi.org/10.1088/0029-5515/56/1/014001
[1] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[2] Zhi-Xin Yang, Liang Wang, Yu-Mu Liu, Dong-Yang Wang, Cheng-Hua Bai, Shou Zhang, Hong-Fu Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature[J]. Front. Phys. , 2020, 15(5): 52504-.
[3] Yong-Jia Wang, Qing-Feng Li. Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies[J]. Front. Phys. , 2020, 15(4): 44302-.
[4] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[5] Yang-Yang Fu, Yue Fei, Da-Xing Dong, You-Wen Liu. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601-.
[6] Feng Tang, Xiangang Wan. Effective models for nearly ideal Dirac semimetals[J]. Front. Phys. , 2019, 14(4): 43603-.
[7] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[8] Ai-Guo Xu, Guang-Cai Zhang, Yu-Dong Zhang, Pei Wang, Yang-Jun Ying. Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry[J]. Front. Phys. , 2018, 13(5): 135102-.
[9] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[10] Yue-Hua Su, Han-Tao Lu. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons[J]. Front. Phys. , 2018, 13(2): 137103-.
[11] Jing-Min Hou, Wei Chen. Hidden antiunitary symmetry behind “accidental” degeneracy and its protection of degeneracy[J]. Front. Phys. , 2018, 13(1): 130301-.
[12] Yong-Yao Li, Zhi-Wei Fan, Zhi-Huan Luo, Yan Liu, He-Xiang He, Jian-Tao Lü, Jia-Ning Xie, Chun-Qing Huang, Hai-Shu Tan. Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons[J]. Front. Phys. , 2017, 12(5): 124206-.
[13] Yi Wu,Bo Zhu,Shu-Fang Hu,Zheng Zhou,Hong-Hua Zhong. Floquet control of the gain and loss in a PT-symmetric optical coupler[J]. Front. Phys. , 2017, 12(1): 121102-.
[14] Gui-Hua Chen,Hong-Cheng Wang,Zhao-Pin Chen,Yan Liu. Fundamental modes in waveguide pipe twisted by saturated double-well potential[J]. Front. Phys. , 2017, 12(1): 124201-.
[15] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed