Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 137204    https://doi.org/10.1007/s11467-018-0800-4
RESEARCH ARTICLE
Efimov effect in Dirac semi-metals
Pengfei Zhang1, Hui Zhai1,2()
1. Institute for Advanced Study, Tsinghua University, Beijing 100084, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
 Download: PDF(1123 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Efimov effect is defined as a quantum state with discrete scaling symmetry and a universal scaling factor. It has attracted considerable interests from nuclear to atomic physics communities. In a Dirac semi-metal, when an electron interacts with a static impurity through a Coulombic interaction, the same kinetic scaling and the interaction energy results in the Efimov effect. However, even when the Fermi energy lies exactly at the Dirac point, the vacuum polarization of the electron-hole pair fluctuation can still screen the Coulombic interaction, which leads to deviations from the scaling symmetry and eventually breaks down of the Efimov effect. This energy distortion of the Efimov states due to vacuum polarization is a relativistic electron analogy of the Lamb shift for the hydrogen atom. Motivated by the recent experimental observations in two- and three-dimensional Dirac semi-metals, we herein investigate this many-body correction to the Efimov effect and the conditions that allow some of the Efimov-like quasi-bound states to be observed in these condensed matter experiments.

Keywords Dirac semi-metal      Efimov effect      screening     
Corresponding Author(s): Hui Zhai   
Issue Date: 13 June 2018
 Cite this article:   
Pengfei Zhang,Hui Zhai. Efimov effect in Dirac semi-metals[J]. Front. Phys. , 2018, 13(5): 137204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0800-4
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/137204
1 V. Efimov, Energy levels arising from resonant two-body forces in a three-body system, Phys. Lett. B 33(8), 563 (1970)
https://doi.org/10.1016/0370-2693(70)90349-7
2 T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature 440(7082), 315 (2006)
https://doi.org/10.1038/nature04626
3 B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observation of the second triatomic resonance in Efimov’s scenario, Phys. Rev. Lett. 112(19), 190401 (2014)
https://doi.org/10.1103/PhysRevLett.112.190401
4 R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemüller, Observation of Efimov resonances in a mixture with extreme mass imbalance, Phys. Rev. Lett. 112(25), 250404 (2014)
https://doi.org/10.1103/PhysRevLett.112.250404
5 S. K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin, Geometric scaling of Efimov states in a 6Li-133Cs mixture, Phys. Rev. Lett. 113(24), 240402 (2014)
https://doi.org/10.1103/PhysRevLett.113.240402
6 M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schoffler, A. Czasch, W. Schollkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
https://doi.org/10.1126/science.aaa5601
7 S. Deng, Z. Y. Shi, P. Diao, Q. Yu, H. Zhai, R. Qi, and H. Wu, Observation of the Efimovian expansion in scaleinvariant Fermi gases, Science 353(6297), 371 (2016)
https://doi.org/10.1126/science.aaf0666
8 Z.-Y. Shi, R. Qi, H. Zhai, Z. Yu, Dynamic super Efimov effect,Phys. Rev. A 96, 050702(R) (2017)
9 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
10 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
11 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
12 A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Atomic collapse and quasi-Rydberg states in graphene, Phys. Rev. Lett. 99(24), 246802 (2007)
https://doi.org/10.1103/PhysRevLett.99.246802
13 V. M. Pereira, J. Nilsson, and A. H. C. Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99(16), 166802 (2007)
https://doi.org/10.1103/PhysRevLett.99.166802
14 Y. Nishida, Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance, Phys. Rev. B 90(16), 165414 (2014)
https://doi.org/10.1103/PhysRevB.90.165414
15 Y. Nishida, Renormalization group analysis of graphene with a supercritical Coulomb impurity, Phys. Rev. B 94(8), 085430 (2016)
https://doi.org/10.1103/PhysRevB.94.085430
16 H. Wang, H. Liu, Y. Li, Y. Liu, J. Wang, J. Liu, Y. Wang, L. Li, J. Yan, D. Mandrus, X. C. Xie, and J. Wang, Discrete scale invariance and fermionic Efimov states in ultra-quantum ZrTe5, arXiv: 1704.00995
17 O. Ovdat, J. Mao, Y. Jiang, E. Y. Andrei, and E. Akkermans, Observing a scale anomaly and a universal quantum phase transition in graphene, Nat. Commun. 8(1), 507 (2017)
https://doi.org/10.1038/s41467-017-00591-8
18 A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Vacuum polarization and screening of supercritical impurities in graphene, Phys. Rev. Lett. 99(23), 236801 (2007)
https://doi.org/10.1103/PhysRevLett.99.236801
19 H. Isobe and N. Nagaosa, Theory of a quantum critical phenomenon in a topological insulator: (3+ 1)- dimensional quantum electrodynamics in solids, Phys. Rev. B 86(16), 165127 (2012)
https://doi.org/10.1103/PhysRevB.86.165127
20 S. K. Jian and H. Yao, Correlated double-Weyl semimetals with Coulomb interactions: Possible applications to HgCr2Se4 and SrSi2, Phys. Rev. B 92(4), 045121 (2015)
https://doi.org/10.1103/PhysRevB.92.045121
21 E. Braaten and H. W. Hammer, Universality in fewbody systems with large scattering length, Phys. Rep. 428(5–6), 259 (2006)
https://doi.org/10.1016/j.physrep.2006.03.001
22 See Appendix A for detailed derivation.
[1] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[2] Li-juan RUAN(阮丽娟). Relativistic Heavy-Ion Collider (RHIC) physics overview[J]. Front Phys Chin, 2010, 5(2): 205-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed