Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 136702    https://doi.org/10.1007/s11467-018-0802-2
RESEARCH ARTICLE
Polarons in alkaline-earth-like atoms with multiple background Fermi surfaces
Jin-Ge Chen1, Yue-Ran Shi1, Xiang Zhang1(), Wei Zhang1,2()
1. Department of Physics, Renmin University of China, Beijing 100872, China
2. Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
 Download: PDF(3578 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the impurity problem in a Fermi gas of 173Yb atoms near an orbital Feshbach resonance (OFR), where a single moving particle in the 3P0 state interacts with two background Fermi seas of particles in different nuclear states of the ground 1S0 manifold. By employing wave function ansatz to molecule and polaron states, we investigate various properties of the molecule, the attractive polaron, and the repulsive polaron states. In comparison to the case where only one Fermi sea is populated, we find that the presence of an additional Fermi sea acts as an energy shift between the two channels of the OFR. In addition, quantum fluctuations near the Fermi level can also induce sizable effects to various properties of the attractive and repulsive polarons.

Keywords Fermi gas      alkaline-earth atoms      orbital Feshbach resonance      polaron     
Corresponding Author(s): Xiang Zhang,Wei Zhang   
Issue Date: 13 June 2018
 Cite this article:   
Jin-Ge Chen,Yue-Ran Shi,Xiang Zhang, et al. Polarons in alkaline-earth-like atoms with multiple background Fermi surfaces[J]. Front. Phys. , 2018, 13(4): 136702.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0802-2
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/136702
1 R. Zhang, Y. Cheng, H. Zhai, and P. Zhang, Orbital Feshbach resonance in alkali-earth atoms, Phys. Rev. Lett. 115(13), 135301 (2015)
https://doi.org/10.1103/PhysRevLett.115.135301
2 G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance, Phys. Rev. Lett. 115(26), 265301 (2015)
https://doi.org/10.1103/PhysRevLett.115.265301
3 M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish, J. Levinsen, I. Bloch, and S. Fölling, Observation of an orbital interaction-induced Feshbach resonance in Yb173, Phys. Rev. Lett. 115(26), 265302 (2015)
https://doi.org/10.1103/PhysRevLett.115.265302
4 Y. Cheng, R. Zhang, and P. Zhang, Orbital Feshbach resonances with a small energy gap between open and closed channels, Phys. Rev. A 93(4), 042708 (2016)
https://doi.org/10.1103/PhysRevA.93.042708
5 T.-S. Deng, W. Zhang, and W. Yi, Tuning Feshbach resonances in cold atomic gases with interchannel coupling, Phys. Rev. A 96, 050701(R) (2017)
6 M. Iskin, Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance, Phys. Rev. A 94, 011604(R) (2016)
7 M. Iskin, Trapped Yb173 Fermi gas across an orbital Feshbach resonance, Phys. Rev. A 95(1), 013618 (2017)
https://doi.org/10.1103/PhysRevA.95.013618
8 J. Xu, R. Zhang, Y. Cheng, P. Zhang, R. Qi, and H. Zhai, Reaching a Fermi-superfluid state near an orbital Feshbach resonance, Phys. Rev. A 94(3), 033609 (2016)
https://doi.org/10.1103/PhysRevA.94.033609
9 L. He, J. Wang, S. G. Peng, X. J. Liu, and H. Hu, Strongly correlated Fermi superfluid near an orbital Feshbach resonance: Stability, equation of state, and Leggett mode, Phys. Rev. A 94(4), 043624 (2016)
https://doi.org/10.1103/PhysRevA.94.043624
10 Y.-C. Zhang, S. Ding, and S. Zhang, Collective modes in a two-band superfluid of ultracold alkaline-earth-metal atoms close to an orbital Feshbach resonance, Phys. Rev. A 95, 041603(R) (2017)
11 S. Wang, J. S. Pan, X. Cui, W. Zhang, and W. Yi, Topological Fulde-Ferrell states in alkaline-earth-metallike atoms near an orbital Feshbach resonance, Phys. Rev. A 95(4), 043634 (2017)
https://doi.org/10.1103/PhysRevA.95.043634
12 Y. Cheng, R. Zhang, and P. Zhang, Quantum defect theory for the orbital Feshbach resonance, Phys. Rev. A 95(1), 013624 (2017)
https://doi.org/10.1103/PhysRevA.95.013624
13 J. G. Chen, T. S. Deng, W. Yi, and W. Zhang, Polarons and molecules in a Fermi gas with orbital Feshbach resonance, Phys. Rev. A 94(5), 053627 (2016)
https://doi.org/10.1103/PhysRevA.94.053627
14 J. Xu and R. Qi, Polaronic and dressed molecular states in orbital Feshbach resonances, arXiv: 1710.00785 (2017)
15 T. S. Deng, Z. C. Lu, Y. R. Shi, J. G. Chen, W. Zhang, and W. Yi, Repulsive polarons in alkaline-earth-metallike atoms across an orbital Feshbach resonance, Phys. Rev. A 97(1), 013635 (2018)
https://doi.org/10.1103/PhysRevA.97.013635
16 F. Chevy, Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations, Phys. Rev. A 74(6), 063628 (2006)
https://doi.org/10.1103/PhysRevA.74.063628
17 R. Combescot, A. Recati, C. Lobo, and F. Chevy, Normal state of highly polarized Fermi gases: Simple manybody approaches, Phys. Rev. Lett. 98(18), 180402 (2007)
https://doi.org/10.1103/PhysRevLett.98.180402
18 M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaronto- molecule transition in a strongly imbalanced Fermi gas, Phys. Rev. A 80(5), 053605 (2009)
https://doi.org/10.1103/PhysRevA.80.053605
19 S. Zöllner, G. M. Bruun, and C. J. Pethick, Polarons and molecules in a two-dimensional Fermi gas, Phys. Rev. A 83, 021603(R) (2011)
20 M. Klawunn and A. Recati, Fermi polaron in two dimensions: Importance of the two-body bound state, Phys. Rev. A 84(3), 033607 (2011)
https://doi.org/10.1103/PhysRevA.84.033607
21 M. M. Parish, Polaron-molecule transitions in a twodimensional Fermi gas, Phys. Rev. A 83, 051603(R) (2011)
22 R. Schmidt, and T. Enss, Excitation spectra and RF response near the polaron-to-molecule transition from the functional renormalization group, Phys. Rev. A 83(6), 063620 (2011)
https://doi.org/10.1103/PhysRevA.83.063620
23 X. W. Guan, Polaron, molecule and pairing in onedimensional spin-1/2 Fermi gas with an attractive deltafunction interaction, Front. Phys. 7(1), 8 (2012)
https://doi.org/10.1007/s11467-011-0213-0
24 C. Trefzger, and Y. Castin, Impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches, Phys. Rev. A 85(5), 053612 (2012)
https://doi.org/10.1103/PhysRevA.85.053612
25 M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld, and M. Köhl, Attractive and repulsive Fermi polarons in two dimensions, Nature 485(7400), 619 (2012)
https://doi.org/10.1038/nature11151
26 P. Massignan, M. Zaccanti, and G. Bruun, Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases, Rep. Prog. Phys. 77(3), 034401 (2014)
https://doi.org/10.1088/0034-4885/77/3/034401
27 R. Schmidt, M. Knap, D. A. Ivanov, J. S. You, M. Cetina, and E. Demler, Universal many-body response of heavy impurities coupled to a Fermi sea: A review of recent progress, Rep. Prog. Phys. 81(2), 024401 (2018)
https://doi.org/10.1088/1361-6633/aa9593
28 P. Massignan and G. M. Bruun, Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases, Eur. Phys. J. D 65(1-2), 83 (2011)
https://doi.org/10.1140/epjd/e2011-20084-5
29 P. Massignan, Z. Yu, and G. M. Bruun, Itinerant ferromagnetism in a polarized two-component Fermi gas, Phys. Rev. Lett. 110(23), 230401 (2013)
https://doi.org/10.1103/PhysRevLett.110.230401
30 C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture, Nature 485(7400), 615 (2012)
https://doi.org/10.1038/nature11065
31 X. Cui and H. Zhai, Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases, Phys. Rev. A 81, 041602(R) (2010)
32 S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study, Phys. Rev. Lett. 105(3), 030405 (2010)
https://doi.org/10.1103/PhysRevLett.105.030405
33 M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Waldraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, and E. Demler, Ultrafast manybody interferometry of impurities coupled to a Fermi sea, Science 354(6308), 96 (2016)
https://doi.org/10.1126/science.aaf5134
34 G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T. Enss, M. Inguscio, M. Zaccanti, and G. Roati, Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics, Nat. Phys. 13(7), 704 (2017)
35 S. Mondal, D. Inotani, and Y. Ohashi, Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance, arXiv: 1709.00154v1 (2017)
36 C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
https://doi.org/10.1103/RevModPhys.82.1225
37 F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G. Roati, Repulsive Fermi polarons in a resonant mixture of ultracold Li6 atoms, Phys. Rev. Lett. 118(8), 083602 (2017)
https://doi.org/10.1103/PhysRevLett.118.083602
[1] Hui Sun, Hua Li, Qiang Tian. Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires[J]. Front. Phys. , 2018, 13(2): 137301-.
[2] Dongyang Yu, Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi. Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling[J]. Front. Phys. , 2018, 13(1): 136701-.
[3] Shu-Yang Wang, Jing-Wei Jiang, Yue-Ran Shi, Qiongyi He, Qihuang Gong, Wei Zhang. Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions[J]. Front. Phys. , 2017, 12(5): 126701-.
[4] Dazhi Xu,Jianshu Cao. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach[J]. Front. Phys. , 2016, 11(4): 110308-110308.
[5] Hua Li, Bing-Can Liu, Bing-Xin Shi, Si-Yu Dong, Qiang Tian. Novel method to determine effective length of quantum confinement using fractional-dimension space approach[J]. Front. Phys. , 2015, 10(4): 107302-.
[6] Peng-Jun Wang, Jing Zhang. Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases[J]. Front. Phys. , 2014, 9(5): 598-612.
[7] Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases[J]. Front. Phys. , 2014, 9(5): 539-570.
[8] Hui Hu. Many-body theories of density response for a strongly correlated Fermi gas[J]. Front. Phys. , 2012, 7(1): 98-108.
[9] Xi-Wen Guan. Polaron, molecule and pairing in one-dimensional spin-1/2 Fermi gas with an attractive Delta-function interaction[J]. Front. Phys. , 2012, 7(1): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed