|
|
Cross and joint ordinal partition transition networks for multivariate time series analysis |
Heng Guo, Jia-Yang Zhang, Yong Zou( ), Shu-Guang Guan( ) |
Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract We propose the construction of cross and joint ordinal pattern transition networks from multivariate time series for two coupled systems, where synchronizations are often present. In particular, we focus on phase synchronization, which is a prototypical scenario in dynamical systems. We systematically show that cross and joint ordinal pattern transition networks are sensitive to phase synchronization. Furthermore, we find that some particular missing ordinal patterns play crucial roles in forming the detailed structures in the parameter space, whereas the calculations of permutation entropy measures often do not. We conclude that cross and joint ordinal partition transition network approaches provide complementary insights into the traditional symbolic analysis of synchronization transitions.
|
Keywords
nonlinear time series analysis
complex networks
ordinal pattern partition
transition network
phase synchronization
|
Corresponding Author(s):
Yong Zou,Shu-Guang Guan
|
Issue Date: 29 June 2018
|
|
1 |
R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos 21(04), 1019 (2011)
https://doi.org/10.1142/S0218127411029021
|
2 |
R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, Recurrence networks – A novel paradigm for nonlinear time series analysis, New J. Phys. 12(3), 033025 (2010)
https://doi.org/10.1088/1367-2630/12/3/033025
|
3 |
N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and J. Kurths, Complex network approach for recurrence analysis of time series, Phys. Lett. A 373(46), 4246 (2009)
https://doi.org/10.1016/j.physleta.2009.09.042
|
4 |
L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA 105(13), 4972 (2008)
https://doi.org/10.1073/pnas.0709247105
|
5 |
J. Zhang and M. Small, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett. 96(23), 238701 (2006)
https://doi.org/10.1103/PhysRevLett.96.238701
|
6 |
Y. Yang and H. Yang, Complex network-based time series analysis, Physica A 387(5–6), 1381 (2008)
https://doi.org/10.1016/j.physa.2007.10.055
|
7 |
J. F. Donges, R. V. Donner, M. H. Trauth, N. Marwan, H. J. Schellnhuber, and J. Kurths, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. USA 108(51), 20422 (2011)
https://doi.org/10.1073/pnas.1117052108
|
8 |
Y. Zou, R. V. Donner, M. Wickramasinghe, I. Z. Kiss, M. Small, and J. Kurths, Phase coherence and attractor geometry of chaotic electrochemical oscillators, Chaos 22(3), 033130 (2012)
https://doi.org/10.1063/1.4747707
|
9 |
Z. K. Gao, W. D. Dang, Y. X. Yang, and Q. Cai, Multiplex multivariate recurrence network from multichannel signals for revealing oil-water spatial flow behavior, Chaos 27(3), 035809 (2017)
https://doi.org/10.1063/1.4977950
|
10 |
J. B. Elsner, T. H. Jagger, and E. A. Fogarty, Visibility network of united states hurricanes, Geophys. Res. Lett. 36(16), L16702 (2009)
https://doi.org/10.1029/2009GL039129
|
11 |
Y. Zou, M. Small, Z. Liu, and J. Kurths, Complex network approach to characterize the statistical features of the sunspot series, New J. Phys. 16(1), 013051 (2014)
https://doi.org/10.1088/1367-2630/16/1/013051
|
12 |
Y. Zou, R. Donner, N. Marwan, M. Small, and J. Kurths, Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs, Nonlinear Process. Geophys. 21(6), 1113 (2014)
https://doi.org/10.5194/npg-21-1113-2014
|
13 |
R. Zhang, Y. Zou, J. Zhou, Z. K. Gao, and S. Guan, Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes, Commun. Nonlinear Sci. Numer. Simul. 42, 396 (2017)
https://doi.org/10.1016/j.cnsns.2016.04.031
|
14 |
Z. Czechowski, M. Lovallo, and L. Telesca, Multifractal analysis of visibility graph-based Ito-related connectivity time series, Chaos 26(2), 023118 (2016)
https://doi.org/10.1063/1.4942582
|
15 |
C. Zhang, Y. Chen, and G. Hu, Network reconstructions with partially available data, Front. Phys. 12(3), 128906 (2017)
https://doi.org/10.1007/s11467-017-0664-z
|
16 |
Z. Q. Jiang, Y. H. Yang, G. J. Wang, and W. X. Zhou, Joint multifractal analysis based on wavelet leaders, Front. Phys. 12(6), 128907 (2017)
https://doi.org/10.1007/s11467-017-0674-x
|
17 |
R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, The geometry of chaotic dynamics — A complex network perspective, Eur. Phys. J. B 84(4), 653 (2011)
https://doi.org/10.1140/epjb/e2011-10899-1
|
18 |
M. McCullough, M. Small, T. Stemler, and H. H. C. Iu, Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos 25(5), 053101 (2015)
https://doi.org/10.1063/1.4919075
|
19 |
C. W. Kulp, J. M. Chobot, H. R. Freitas, and G. D. Sprechini, Using ordinal partition transition networks to analyze ECG data, Chaos 26(7), 073114 (2016)
https://doi.org/10.1063/1.4959537
|
20 |
C. W. Kulp, J. M. Chobot, B. J. Niskala, and C. J. Needhammer, Using forbidden ordinal patterns to detect determinism in irregularly sampled time series, Chaos 26(2), 023107 (2016)
https://doi.org/10.1063/1.4941674
|
21 |
M. McCullough, K. Sakellariou, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (i): The effects of under-sampling, random depletion, and timing jitter, Chaos 26(12), 123103 (2016)
https://doi.org/10.1063/1.4968551
|
22 |
K. Sakellariou, M. McCullough, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (ii): Reliability in the presence of highly irregular sampling, Chaos 26(12), 123104 (2016)
https://doi.org/10.1063/1.4970483
|
23 |
C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88(17), 174102 (2002)
https://doi.org/10.1103/PhysRevLett.88.174102
|
24 |
U. Parlitz, H. Suetani, and S. Luther, Identification of equivalent dynamics using ordinal pattern distributions, Eur. Phys. J. S.T. 222(2), 553 (2013)
https://doi.org/10.1140/epjst/e2013-01859-2
|
25 |
J. M. Amigó, K. Keller, and V. A. Unakafova, Ordinal symbolic analysis and its application to biomedical recordings, Phil. Trans. R. Soc. A 373(2034), 20140091 (2014)
https://doi.org/10.1098/rsta.2014.0091
|
26 |
F. Takens, Detecting strange attractors in turbulence, in: D. Rand and L.-S. Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980, Vol. 898 of Lecture Notes in Mathematics, Springer, New York, 1981, pp 366–381
https://doi.org/10.1007/BFb0091924
|
27 |
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd Ed., Cambridge: Cambridge University Press, 2004
|
28 |
J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, True and false forbidden patterns in deterministic and random dynamics, Europhys. Lett. 79(5), 50001 (2007)
https://doi.org/10.1209/0295-5075/79/50001
|
29 |
J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, Combinatorial detection of determinism in noisy time series, Europhys. Lett. 83(6), 60005 (2008)
https://doi.org/10.1209/0295-5075/83/60005
|
30 |
O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti, H. A. Larrondo, and A. Plastino, The Amig’o paradigm of forbidden/missing patterns: A detailed analysis, Eur. Phys. J. B 85(12), 419 (2012)
https://doi.org/10.1140/epjb/e2012-30307-8
|
31 |
O. A. Rosso, L. C. Carpi, P. M. Saco, M. Gómez Ravetti, A. Plastino, and H. A. Larrondo, Causality and the entropy-complexity plane: Robustness and missing ordinal patterns, Physica A 391(1–2), 42 (2012)
https://doi.org/10.1016/j.physa.2011.07.030
|
32 |
C. W. Kulp and L. Zunino, Discriminating chaotic and stochastic dynamics through the permutation spectrum test, Chaos 24(3), 033116 (2014)
https://doi.org/10.1063/1.4891179
|
33 |
A. Politi, Quantifying the dynamical complexity of chaotic time series, Phys. Rev. Lett. 118(14), 144101 (2017)
https://doi.org/10.1103/PhysRevLett.118.144101
|
34 |
J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, and Y. Zou, Constructing ordinal partition transition networks from multivariate time series, Sci. Rep. 7(1), 7795 (2017)
https://doi.org/10.1038/s41598-017-08245-x
|
35 |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization– A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
|
36 |
G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 91(2), 024101 (2003)
https://doi.org/10.1103/PhysRevLett.91.024101
|
37 |
J. Zhang, Y. Z. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
https://doi.org/10.1007/s11467-017-0675-9
|
38 |
H. B. Chen, Y. T. Sun, J. Gao, C. Xu, and Z. G. Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
https://doi.org/10.1007/s11467-017-0651-4
|
39 |
X. Huang, J. Gao, Y. T. Sun, Z. G. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
|
40 |
L. M. Ying, J. Zhou, M. Tang, S. G. Guan, and Y. Zou, Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs, Front. Phys. 13(1), 130201 (2018)
https://doi.org/10.1007/s11467-017-0698-2
|
41 |
Z. Zheng and G. Hu, Generalized synchronization versus phase synchronization, Phys. Rev. E 62(6), 7882 (2000)
https://doi.org/10.1103/PhysRevE.62.7882
|
42 |
M. C. Romano, M. Thiel, J. Kurths, and W. von Bloh, Multivariate recurrence plots, Phys. Lett. A 330(3–4), 214 (2004)
https://doi.org/10.1016/j.physleta.2004.07.066
|
43 |
M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos 25(9), 097611 (2015)
https://doi.org/10.1063/1.4917383
|
44 |
S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, The synchronization of chaotic systems,Phys. Rep. 366(1–2), 1 (2002)
https://doi.org/10.1016/S0370-1573(02)00137-0
|
45 |
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 78(22), 4193 (1997)
https://doi.org/10.1103/PhysRevLett.78.4193
|
46 |
M. G. Rosenblum and A. S. Pikovsky, Detecting direction of coupling in interacting oscillators,Phys. Rev. E 64(4), 045202 (2001)
https://doi.org/10.1103/PhysRevE.64.045202
|
47 |
M. C. Romano, M. Thiel, J. Kurths, and C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence, Phys. Rev. E 76(3), 036211 (2007)
https://doi.org/10.1103/PhysRevE.76.036211
|
48 |
J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104(3), 038701 (2010)
https://doi.org/10.1103/PhysRevLett.104.038701
|
49 |
Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, Inferring indirect coupling by means of recurrences,Int. J. Bifurcat. Chaos 21(04), 1099 (2011)
https://doi.org/10.1142/S0218127411029033
|
50 |
A. Groth, Visualization of coupling in time series by order recurrence plots, Phys. Rev. E 72(4), 046220 (2005)
https://doi.org/10.1103/PhysRevE.72.046220
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|