|
|
Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction |
Pei Li1, Zhao-Meng Gao1, Xiu-Shi Huang1, Long-Fei Wang1, Wei-Feng Zhang1( ), Hai-Zhong Guo1,2( ) |
1. Henan Key Laboratory of Photovoltaic Materials, School of Physics and Electronics, Henan University, Kaifeng 475004, China 2. School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract Interfacial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconductor heterojunction can be gradually modified by polarization reversal, which may give rise to continuously tunable resistive switching behavior. In this work, the interfacial state of a ferroelectric BiFeO3/Nb-doped SrTiO3 junction was modulated by ferroelectric polarization reversal. The dynamics of surface screening charges on the BiFeO3 layer was also investigated by surface potential measurements, and the decay of the surface potential could be speeded up by the magnetic field. Moreover, ferroelectric polarization reversal of the BiFeO3 layer was tuned by the magnetic field. This finding could provide a method to enhance the ferroelectric and electrical properties of ferroelectric BiFeO3 films by tuning the magnetic field.
|
Keywords
ferroelectric semiconductor heterojunction
ferroelectric polarization reversal
pulsed laser deposition
Kelvin probe force microscopy
|
Corresponding Author(s):
Wei-Feng Zhang,Hai-Zhong Guo
|
Issue Date: 06 August 2018
|
|
1 |
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299(5613), 1719 (2003)
https://doi.org/10.1126/science.1080615
|
2 |
S. H. Baek, C. M. Folkman, J. W. Park, S. Lee, C. W. Bark, T. Tybell, and C. B. Eom, The nature of polarization fatigue in BiFeO3, Adv. Mater. 23(14), 1621 (2011)
https://doi.org/10.1002/adma.201003612
|
3 |
H. Guo, R. Zhao, K. Jin, L. Gu, D. Xiao, Z. Yang, X. Li, L. Wang, X. He, J. Gu, Q. Wan, C. Wang, H. Lu, C. Ge, M. He, and G. Yang, Interfacial-strain-induced structural and polarization evolutions in epitaxial multiferroic BiFeO3 (001) thin films, ACS Appl. Mater. Interfaces 7(4), 2944 (2015)
https://doi.org/10.1021/am508511y
|
4 |
L. Wang, K. J. Jin, J. X. Gu, C. Ma, X. He, J. Zhang, C. Wang, Y. Feng, Q. Wan, J. A. Shi, L. Gu, M. He, H. B. Lu, and G. Z. Yang, A new non-destructive readout by using photo-recovered surface potential contrast, Sci. Rep. 4(1), 6980 (2015)
https://doi.org/10.1038/srep06980
|
5 |
J. X. Gu, K. J. Jin, L. Wang, X. He, H. Z. Guo, C. Wang, M. He, and G. Z. Yang, Long-time relaxation of photo-induced influence on BiFeO3 thin films, J. Appl. Phys. 118(20), 204103 (2015)
https://doi.org/10.1063/1.4936306
|
6 |
T. Yang, X. Zhang, B. Chen, H. Guo, K. Jin, X. Wu, X. Gao, Z. Li, C. Wang, and X. Li, The evidence of giant surface flexoelectric field in (111) oriented BiFeO3 thin film, ACS Appl. Mater. Interfaces 9(6), 5600 (2017)
https://doi.org/10.1021/acsami.6b15162
|
7 |
B. C. Jeon, D. Lee, M. H. Lee, S. M. Yang, S. C. Chae, T. K. Song, S. D. Bu, J. S. Chung, J. G. Yoon, and T. W. Noh, Flexoelectric effect in the reversal of selfpolarization and associated changes in the electronic functional properties of BiFeO3 thin films, Adv. Mater. 25(39), 5643 (2013)
https://doi.org/10.1002/adma.201301601
|
8 |
R. Guo, L. You, M. Motapothula, Z. Zhang, M. B. H. Breese, L. Chen, D. Wu, and J. L. Wang, Influence of target composition and deposition temperature on the domain structure of BiFeO3 thin films, AIP Adv. 2(4), 042104 (2012)
https://doi.org/10.1063/1.4757938
|
9 |
J. C. Yang, Q. He, P. Yu, and Y. H. Chu, BiFeO3 thin films: A playground for exploring electric-field control of multifunctionalities,Annu. Rev. Mater. Res. 45(1), 249 (2015)
https://doi.org/10.1146/annurev-matsci-070214-020837
|
10 |
Y. Yang, I. C. Infante, B. Dkhil, and L. Bellaiche, Strain effects on multiferroic BiFeO3 films, Comp. Rend. Phys. 16(2), 193 (2015)
https://doi.org/10.1016/j.crhy.2015.01.010
|
11 |
Z. Gao, X. Huang, P. Li, L. Wang, L. Wei, W. Zhang, and H. Guo, Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface, Adv. Mater. Interfaces 5(8), 1701565 (2018)
https://doi.org/10.1002/admi.201701565
|
12 |
X. Huang, Z. Gao, P. Li, L. Wang, X. Liu, W. Zhang, and H. Guo, Resistance change effect in SrTiO3/Si(001) isotype heterojunction,J. Appl. Phys. 123(8), 084502 (2018)
https://doi.org/10.1063/1.5018772
|
13 |
P. Sharma, Y. Heo, B. K. Jang, Y. Y. Liu, J. Y. Li, C. H. Yang, and J. Seidel, Structural and electronic transformation pathways in morphotropic BiFeO3, Sci. Rep. 6(1), 32347 (2016)
https://doi.org/10.1038/srep32347
|
14 |
C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He, and G. Z. Yang, Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 98(19), 192901 (2011)
https://doi.org/10.1063/1.3589814
|
15 |
C. Beekman, W. Siemons, M. Chi, N. Balke, J. Y. Howe, T. Z. Ward, P. Maksymovych, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen, Ferroelectric self-poling, switching, and monoclinic domain configuration in BiFeO3 thin films, Adv. Funct. Mater. 26(28), 5166 (2016)
https://doi.org/10.1002/adfm.201600468
|
16 |
Y. L. Huang, W. S. Chang, C. N. Van, H. J. Liu, K. A. Tsai, J. W. Chen, H. H. Kuo, W. Y. Tzeng, Y. C. Chen, C. L. Wu, C. W. Luo, Y. J. Hsu, and Y. H. Chu, Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure, Nanoscale 8(34), 15795 (2016)
https://doi.org/10.1039/C6NR04997D
|
17 |
J. H. Lee, I. Fina, X. Marti, Y. H. Kim, D. Hesse, and M. Alexe, Spintronic functionality of BiFeO3 domain walls,Adv. Mater. 26(41), 7078 (2014)
https://doi.org/10.1002/adma.201402558
|
18 |
Y. Zhou, L. Fang, L. You, P. Ren, L. Wang, and J. L. Wang, Photovoltaic property of domain engineered epitaxial BiFeO3 films, Appl. Phys. Lett. 105(25), 252903 (2014)
https://doi.org/10.1063/1.4905000
|
19 |
F. Bi, M. Huang, H. Lee, C. B. Eom, P. Irvin, and J. Levy, LaAlO3 thickness window for electronically controlled magnetism at LaAlO3/SrTiO3 heterointerfaces, Appl. Phys. Lett. 107(8), 082402 (2015)
https://doi.org/10.1063/1.4929430
|
20 |
M. Trassin, G. D. Luca, S. Manz, and M. Fiebig, Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation, Adv. Mater. 27(33), 4871 (2015)
https://doi.org/10.1002/adma.201501636
|
21 |
Q. Li, Y. Cao, P. Yu, R. K. Vasudevan, N. Laanait, A. Tselev, F. Xue, L. Q. Chen, P. Maksymovych, S. V. Kalinin, and N. Balke, Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition, Nat. Commun. 6(1), 8985 (2015)
https://doi.org/10.1038/ncomms9985
|
22 |
H. Guo, Q. Li, Z. Yang, K. J. Jin, C. Ge, L. Gu, X. He, X. Li, R. Zhao, Q. Wan, J. Wang, M. He, C. Wang, H. Lu, Y. Yang, and G. Yang, Manipulating magnetoelectric properties by interfacial coupling in La0.3Sr0.7MnO3/Ba0.7Sr0.3TiO3 superlattices,Sci. Rep. 7(1), 7693 (2017)
https://doi.org/10.1038/s41598-017-08260-y
|
23 |
R. Huang, H. C. Ding, W. I. Liang, Y. C. Gao, X. D. Tang, Q. He, C. G. Duan, Z. Zhu, J. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, and Y. H. Chu, Atomic-scale visualization of polarization pinning and relaxation at coherent BiFeO3/LaAlO3 interfaces, Adv. Funct. Mater. 24(6), 793 (2014)
https://doi.org/10.1002/adfm.201301470
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|