|
|
|
Alpha-clustering effects in heavy nuclei |
Zhongzhou Ren1( ), Bo Zhou2( ) |
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 2. Institute for International Collaboration, Hokkaido University, Sapporo 060-0815, Japan |
|
|
|
|
Abstract The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the α cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+α cluster structure in some nuclei, in particular, the 208Pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the α-clustering effects in heavy nuclei. We also discuss the possible α cluster structure of heavy nuclei from the view of α decay.
|
| Keywords
α cluster structure
nuclear cluster model
α correlations
α decay
|
|
Corresponding Author(s):
Zhongzhou Ren,Bo Zhou
|
|
Issue Date: 13 December 2018
|
|
| 1 |
K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977
https://doi.org/10.1007/978-3-322-85255-7
|
| 2 |
H. Horiuchi, K. Ikeda, and Y. Suzuki, Molecule-like structures in nuclear system, Prog. Theor. Phys. Suppl. 52, 89 (1972)
https://doi.org/10.1143/PTPS.52.89
|
| 3 |
H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)
https://doi.org/10.1143/PTPS.192.1
|
| 4 |
M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meisner, Microscopic clustering in nuclei, arXiv: 170506192 (2017)
|
| 5 |
W. Wefelmeier, Ein geometrisches Modell des Atomkerns, Z. Für Phys. Hadrons Nucl. 107, 332 (1937)
|
| 6 |
K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei, Prog. Theor. Phys. Suppl. E68, 464 (1968)
https://doi.org/10.1143/PTPS.E68.464
|
| 7 |
H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)
https://doi.org/10.1143/PTPS.62.90
|
| 8 |
Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, et al., Comprehensive study of alpha-nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)
https://doi.org/10.1143/PTPS.68.29
|
| 9 |
M. Freer and H. O. U. Fynbo, The Hoyle state in 12C, Prog. Part. Nucl. Phys. 78, 1 (2014)
https://doi.org/10.1016/j.ppnp.2014.06.001
|
| 10 |
A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)
https://doi.org/10.1103/PhysRevLett.87.192501
|
| 11 |
Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)
https://doi.org/10.1016/j.ppnp.2015.01.001
|
| 12 |
T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, et al., Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)
https://doi.org/10.1103/PhysRevA.78.035603
|
| 13 |
A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of alpha-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)
https://doi.org/10.1103/RevModPhys.89.011002
|
| 14 |
Y. Kanada-En’yo and H. Horiuchi, Clustering in yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)
https://doi.org/10.1143/ptp/93.1.115
|
| 15 |
M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, Eur. Phys. J. A 52, 373 (2016)
https://doi.org/10.1140/epja/i2016-16373-9
|
| 16 |
H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515, 147 (1990)
https://doi.org/10.1016/0375-9474(90)90328-J
|
| 17 |
T. Neff and H. Feldmeier, Cluster structures within fermionic molecular dynamics, Nucl. Phys. A 738, 357 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.04.061
|
| 18 |
C. Beck (Ed.), Clusters in Nuclei, Lecture Notes in Physics, Springer, Heidelberg; New York, 2010
https://doi.org/10.1007/978-3-642-13899-7
|
| 19 |
B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathing-like excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)
https://doi.org/10.1103/PhysRevC.94.044319
|
| 20 |
Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, et al., Resonance states in 12C and alpha-particle condensation, Eur. Phys. J. A 24, 321 (2005)
https://doi.org/10.1140/epja/i2004-10238-x
|
| 21 |
Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys.2012 (2012)
|
| 22 |
T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li, d) reaction, Prog. Theor. Phys. 132, 73 (1998)
https://doi.org/10.1143/PTPS.132.73
|
| 23 |
T. Sakuda and S. Ohkubo, Microscopic study of coexistence of alpha-cluster and shell-model structure in the 40Ca-44Ti region, Prog. Theor. Phys. 132, 103 (1998)
https://doi.org/10.1143/PTPS.132.103
|
| 24 |
R. D. Lawson, Theory of the Nuclear Shell Model, Clarendon Press, 1980
|
| 25 |
R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Phys. Rep. 294, 265 (1998)
https://doi.org/10.1016/S0370-1573(97)00049-5
|
| 26 |
I. Tonozuka and A. Arima, Surface α-clustering and α-decays of 212Po, Nucl. Phys. A 323, 45 (1979)
https://doi.org/10.1016/0375-9474(79)90415-9
|
| 27 |
A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, et al., Novel manifestation of ensuremath alpha-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)
https://doi.org/10.1103/PhysRevLett.104.042701
|
| 28 |
Z. Ren, C. Xu, and Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei, Phys. Rev. C 70, 034304 (2004)
https://doi.org/10.1103/PhysRevC.70.034304
|
| 29 |
J. Zhang, W. Rae, and A. Merchant, Systematics of some 3-dimensional alpha-cluster configurations in 4n nuclei from 16O to 44Ti, Nucl. Phys. A 575, 61 (1994)
https://doi.org/10.1016/0375-9474(94)90137-6
|
| 30 |
S. i. Koh, Many-body approach to the alpha-correlation inside of the heavy nuclei, Prog. Theor. Phys. Suppl. 132, 197 (1998)
https://doi.org/10.1143/PTPS.132.197
|
| 31 |
A. Tohsaki and N. Itagaki, Alpha clustering with a hollow structure: Geometrical structure of alpha clusters from platonic solids to fullerene shape, Phys. Rev. C 97, 011301 (2018)
https://doi.org/10.1103/PhysRevC.97.011301
|
| 32 |
N. Takigawa and A. Arima, Structure of 12C, Nucl. Phys. A 168, 593 (1971)
https://doi.org/10.1016/0375-9474(71)90549-5
|
| 33 |
K. Ikeda, T. Marumori, R. Tamagaki, and H. Tanaka, Formation of the Viewpoint, Alpha-like four-body correlations and molecular aspects in nuclei, Prog. Theor. Phys. Suppl. 52, 1 (1972)
https://doi.org/10.1143/PTPS.52.1
|
| 34 |
Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized molecular dynamics: A new insight into the structure of nuclei, Comp. Rend. Phys. 4, 497 (2003)
https://doi.org/10.1016/S1631-0705(03)00062-8
|
| 35 |
M. Kimura, Cluster states in stable and unstable nuclei, arXiv: 1612.02086 (2016)
|
| 36 |
T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 20O+α, Prog. Theor. Phys. 53, 706 (1975)
https://doi.org/10.1143/PTP.53.706
|
| 37 |
B. Zhou, Z. Ren, C. Xu, Y. Funaki, et al., New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)
https://doi.org/10.1103/PhysRevC.86.014301
|
| 38 |
J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)
https://doi.org/10.1038/nature11246
|
| 39 |
H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)
https://doi.org/10.1143/PTP.40.277
|
| 40 |
A. Arima and S. Yoshida, Alpha-decay widths of 20Ne, Phys. Lett. B 40, 15 (1972)
https://doi.org/10.1016/0370-2693(72)90269-9
|
| 41 |
B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)
https://doi.org/10.1103/PhysRevC.89.034319
|
| 42 |
P. Chattopadhyay and R. M. Dreizler, Numerical aspects of angular momentum projection for rotational nuclei, Nucl. Phys. A 321, 62 (1979)
https://doi.org/10.1016/0375-9474(79)90685-7
|
| 43 |
P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer Science & Business Media, 2004
|
| 44 |
B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)
https://doi.org/10.1103/PhysRevLett.110.262501
|
| 45 |
Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, et al., Container structure of alpha-alpha-lambda clusters in 9-lambda-beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)
|
| 46 |
B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, et al., The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)
|
| 47 |
M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)
https://doi.org/10.1103/PhysRevC.91.014313
|
| 48 |
M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)
https://doi.org/10.1103/PhysRevC.93.054308
|
| 49 |
B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)
|
| 50 |
S. Ohkubo and K. Umehara, Inversion doublet Kπ= 0– band with the alpha+36Ar cluster structure in 40Ca, Prog. Theor. Phys. 80, 598 (1988)
https://doi.org/10.1143/PTP.80.598
|
| 51 |
Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi, Clustering and triaxial deformations of 40Ca, Phys. Rev. C 76, 044317 (2007)
https://doi.org/10.1103/PhysRevC.76.044317
|
| 52 |
T. Yamaya, M. Saitoh, M. Fujiwara, T. Itahashi, K. Katori, T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Cluster structure in 40Ca via the α-transfer reaction, Nucl. Phys. A 573, 154 (1994)
https://doi.org/10.1016/0375-9474(94)90019-1
|
| 53 |
T. Wada and H. Horiuchi, Resonating-group-method study of alpha+40Ca elastic scattering and 44Ti structure, Phys. Rev. C 38, 2063 (1988)
https://doi.org/10.1103/PhysRevC.38.2063
|
| 54 |
F. Michel, S. Ohkubo, and G. Reidemeister, Local potential approach to the alpha-nucleus interaction and alpha-cluster structure in nuclei, Prog. Theor. Phys. Suppl. 132, 7 (1998)
https://doi.org/10.1143/PTPS.132.7
|
| 55 |
M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)
https://doi.org/10.1016/j.nuclphysa.2005.12.006
|
| 56 |
R. R. Betts, Resonances in heavy ion collisions — Nuclear structure at large deformations, Nucl. Phys. A 447, 257 (1986)
https://doi.org/10.1016/0375-9474(86)90613-5
|
| 57 |
E. Uegaki, Molecular resonances in medium-weight nuclei, Prog. Theor. Phys. 132, 135 (1998)
https://doi.org/10.1143/PTPS.132.135
|
| 58 |
E. Uegaki and Y. Abe, Resonances in 28Si+28Si.I — dinuclear molecular model with axial asymmetry, Prog. Theor. Phys. 127, 831 (2012)
https://doi.org/10.1143/PTP.127.831
|
| 59 |
E. Uegaki and Y. Abe, Resonances in 28Si+28Si (II) — Analyses for the angular distributions and angular correlations, Prog. Theor. Phys. 127, 877 (2012)
https://doi.org/10.1143/PTP.127.877
|
| 60 |
S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)
https://doi.org/10.1143/PTPS.62.11
|
| 61 |
Z. Ren and G.-O. Xu, Evidence of alpha correlation from binding energies in medium and heavy nuclei, Phys. Rev. C 38, 1078 (1988)
https://doi.org/10.1103/PhysRevC.38.1078
|
| 62 |
M. Hasegawa, Alpha-like four-nucleon correlations viewed in single-particle mean field, Prog. Theor. Phys. 132, 177 (1998)
https://doi.org/10.1143/PTPS.132.177
|
| 63 |
M. Girod and P. Schuck, Alpha-particle clustering from expanding self-conjugate nuclei within the Hartree–Fock–Bogoliubov approach, Phys. Rev. Lett. 111, 132503 (2013)
https://doi.org/10.1103/PhysRevLett.111.132503
|
| 64 |
F. D. Becchetti, L. T. Chua, J. Jänecke, and A. M. VanderMolen, Systematics of the (d, 6Li) Reaction and alpha Clustering in Heavy Nuclei, Phys. Rev. Lett. 34, 225 (1975)
https://doi.org/10.1103/PhysRevLett.34.225
|
| 65 |
F. D. Becchetti and J. Jänecke, Neutron blocking in alpha-particle-transfer reactions, Phys. Rev. Lett. 35, 268 (1975)
https://doi.org/10.1103/PhysRevLett.35.268
|
| 66 |
Z. Ren and G.-O. Xu, Reduced alpha transfer rates in a schematic model, Phys. Rev. C 36, 456 (1987)
https://doi.org/10.1103/PhysRevC.36.456
|
| 67 |
B. Buck, J. C. A. C. Merchant, and S. M. Perez, Cluster model of alpha decay and 212Po, Phys. Rev. C 53, 2841 (1996)
https://doi.org/10.1103/PhysRevC.53.2841
|
| 68 |
C. Xu, Z. Ren, G. Röpke, P. Schuck, et al., alpha-decay width of 212Po from a quartetting wave function approach, Phys. Rev. C 93, 011306 (2016)
https://doi.org/10.1103/PhysRevC.93.011306
|
| 69 |
C. Xu, G. Röpke, P. Schuck, Z. Ren, et al., Alpha-cluster formation and decay in the quartetting wave function approach, Phys. Rev. C 95, 061306 (2017)
https://doi.org/10.1103/PhysRevC.95.061306
|
| 70 |
K. Varga, R. G. Lovas, and R. J. Liotta, Absolute alpha decay width of 212Po in a combined shell and cluster model, Phys. Rev. Lett. 69, 37 (1992)
https://doi.org/10.1103/PhysRevLett.69.37
|
| 71 |
G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Nuclear clusters bound to doubly magic nuclei: The case of 212Po, Phys. Rev. C 90, 034304 (2014)
https://doi.org/10.1103/PhysRevC.90.034304
|
| 72 |
G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Alpha decay width of 212Po from a quartetting wave function approach, J. Phys. Conf. Ser. 863, 012006 (2017)
https://doi.org/10.1088/1742-6596/863/1/012006
|
| 73 |
Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)
https://doi.org/10.1103/PhysRevC.93.034319
|
| 74 |
D. Brink, The Alpha-Particle Model of Light Nuclei, in International School of Physics Enrico Fermi, Course 37(in International School of Physics, 1966)
|
| 75 |
D. M. Brink, History of cluster structure in nuclei, J. Phys. Conf. Ser. 111, 012001 (2008)
https://doi.org/10.1088/1742-6596/111/1/012001
|
| 76 |
Y. Akaishi, S. A. Chin, Horiuchi, and K. Ikeda, Cluster Models and Other Topics, World Scientific, 1987
https://doi.org/10.1142/0248
|
| 77 |
A. Tohsaki and N. Itagaki, Coulomb energy of alphaparticle aggregates distributed on Archimedean solids, Phys. Rev. C 98, 014302 (2018)
https://doi.org/10.1103/PhysRevC.98.014302
|
| 78 |
A. Tohsaki, New effective internucleon forces in microscopic alpha-cluster model, Phys. Rev. C 49, 1814 (1994)
https://doi.org/10.1103/PhysRevC.49.1814
|
| 79 |
D. Brink and J. Castro, Alpha clustering effects in nuclear matter, Nucl. Phys. A 216, 109 (1973)
https://doi.org/10.1016/0375-9474(73)90521-6
|
| 80 |
A. Tohsaki-Suzuki, Microscopic study of alpha-cluster matter, Prog. Theor. Phys. 81, 370 (1989)
https://doi.org/10.1143/PTP.81.370
|
| 81 |
K. Wei and H. F. Zhang, Cluster preformation law for heavy and superheavy nuclei, Phys. Rev. C96 (2017)
https://doi.org/10.1103/PhysRevC.96.021601
|
| 82 |
Y. Qian and Z. Ren, New insight into α clustering of heavy nuclei via their α decay, Phys. Lett. B 777, 298 (2018)
https://doi.org/10.1016/j.physletb.2017.12.046
|
| 83 |
D. Ni and Z. Ren, Systematic calculation of α decay within a generalized density-dependent cluster model, Phys. Rev. C 81, 024315 (2010)
https://doi.org/10.1103/PhysRevC.81.024315
|
| 84 |
D. Ni and Z. Ren, Theoretical description of fine structure in the ensuremath alpha decay of heavy odd-odd nuclei, Phys. Rev. C 87, 027602 (2013)
https://doi.org/10.1103/PhysRevC.87.027602
|
| 85 |
Y. Qian and Z. Ren, Systematic calculations on exotic α-decay half-lives of nuclei with N= 125, 126, 127, Nucl. Phys. A 852, 82 (2011)
https://doi.org/10.1016/j.nuclphysa.2011.01.007
|
| 86 |
C. Xu and Z. Ren, New deformed model of alpha-decay half-lives with a microscopic potential, Phys. Rev. C 73, 041301 (2006)
https://doi.org/10.1103/PhysRevC.73.041301
|
| 87 |
A. N. Andreyev, M. Huyse, P. Van Duppen, et al., Signatures of the Z= 82 Shell Closure in alpha Decay Process, Phys. Rev. Lett. 110, 242502 (2013)
https://doi.org/10.1103/PhysRevLett.110.242502
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|