|
|
New models for multi-dimensional stable vortex solitons |
Hidetsugu Sakaguchi( ) |
Nonlinear Physics Laboratory, Department of Advanced Energy Science and Engineering, Kyushu University, Japan |
|
|
|
Corresponding Author(s):
Hidetsugu Sakaguchi
|
Just Accepted Date: 07 September 2018
Issue Date: 01 January 2019
|
|
1 |
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolutions Equations, and Inverse Scattering, Cambridge University Press, New York, 1991
https://doi.org/10.1017/CBO9780511623998
|
2 |
G. L. Jr Lamb, Elements of Soliton Theory, Dover, New York, 1994
|
3 |
Y. S. Kivshar and G. P. Agrawal, Optical Solitons, Academic Press, San Diego, 2003
|
4 |
K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417(6885), 150 (2002)
https://doi.org/10.1038/nature747
|
5 |
L. Khaykovich, F. Schreck, G. Ferrari, and T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and G. Salomon, Formation of a matter-wave bright soliton, Science 296(5571), 1290 (2002)
https://doi.org/10.1126/science.1071021
|
6 |
L. Bergé, Wave collapse in physics and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)
https://doi.org/10.1016/S0370-1573(97)00092-6
|
7 |
G. Fibich and G. Papanicolaou, Self-focusing in perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math. 60(1), 183 (1999)
https://doi.org/10.1137/S0036139997322407
|
8 |
J. M. Soto-Crespo, D. R. Heartley, E. Wright, and N. N. Ahkmediev, Stability of the higher-bound states in a saturable self-focusing medium, Phys. Rev. A 44(1), 636 (1991)
https://doi.org/10.1103/PhysRevA.44.636
|
9 |
V. Skarka, V. I. Berezhiani, and R. Mijkaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media, Phys. Rev. E 56(1), 1080 (1997)
https://doi.org/10.1103/PhysRevE.56.1080
|
10 |
O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Toner, Algebraic bright and vortex solitons in defocusing media, Opt. Lett. 36(16), 3088 (2011)
https://doi.org/10.1364/OL.36.003088
|
11 |
Q. Tian, L. Xie, H. Zhang, and J. F. Zhang, Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. E 85(5), 056603 (2012)
https://doi.org/10.1103/PhysRevE.85.056603
|
12 |
R. Driben, Y. Kartashov, B. A. Malomed, T. Meier, and L. Toner, Three-dimensional hybrid vortex solitons, New J. Phys. 16(6), 063035 (2014)
https://doi.org/10.1088/1367-2630/16/6/063035
|
13 |
G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Inguscio, and G. Modugno, 39K Bose–Einstein condensate with tunable interactions, Phys. Rev. Lett. 99(1), 010403 (2007)
https://doi.org/10.1103/PhysRevLett.99.010403
|
14 |
Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin-orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
|
15 |
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of twodimensional composite solitons in spin-orbit-coupled selfattractive Bose-Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
https://doi.org/10.1103/PhysRevE.89.032920
|
16 |
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin-orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
https://doi.org/10.1103/PhysRevLett.115.253902
|
17 |
R. X. Zhong, Z. P. Chen, C. Q. Huang, Z. H. Luo, H. S. Tan, B. A. Malomed, and Y. Y. Li, Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13(4), 130311 (2018)
https://doi.org/10.1007/s11467-018-0778-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|