Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (1) : 13608    https://doi.org/10.1007/s11467-018-0867-y
RESEARCH ARTICLE
Stacking transition in rhombohedral graphite
Tataiana Latychevskaia1, Seok-Kyun Son2,3, Yaping Yang2,3, Dale Chancellor2,3, Michael Brown2,3, Servet Ozdemir2,3, Ivan Madan1, Gabriele Berruto1, Fabrizio Carbone1, Artem Mishchenko2,3, Kostya S. Novoselov2,3()
1. Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2. National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
3. School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
 Download: PDF(11234 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Few-layer graphene (FLG) has recently been intensively investigated for its variable electronic properties, which are defined by a local atomic arrangement. While the most natural arrangement of layers in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedral) stacking, characterized by a relatively high-energy barrier, can also occur. When both types of stacking occur in one FLG device, the arrangement results in an in-plane heterostructure with a domain wall (DW). In this paper, we present two approaches to demonstrate that the ABC stacking in FLG can be controllably and locally turned into the ABA stacking. In the first approach, we introduced Joule heating, and the transition was characterized by 2D peak Raman spectra at a submicron spatial resolution. The transition was initiated in a small region, and then the DW was controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of 790-nm-wavelength laser pulses, and the transition was visualized by transmission electron microscopy in both diffraction and dark-field imaging modes. Further, using this approach, the DW was visualized at a nanoscale spatial resolution in the dark-field imaging mode.

Keywords graphene      graphite      van der Waals heterostructures      domain wall      Raman spectroscopy      transmission electron microscopy      electron diffraction      structural transition     
Corresponding Author(s): Tataiana Latychevskaia,Seok-Kyun Son,Kostya S. Novoselov   
Issue Date: 01 January 2019
 Cite this article:   
Tataiana Latychevskaia,Seok-Kyun Son,Yaping Yang, et al. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0867-y
https://academic.hep.com.cn/fop/EN/Y2019/V14/I1/13608
1 J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. Ser. A 106, 749 (1924)
2 F. Laves and Y. Baskin, On the formation of the rhombohedral graphite modification, Z. Kristallogr. Cryst. Mater. 107(5–6), 337 (1956)
https://doi.org/10.1524/zkri.1956.107.5-6.337
3 H. A. Wilhelm, B. Croset, and G. Medjahdi, Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders, Carbon 45(12), 2356 (2007)
https://doi.org/10.1016/j.carbon.2007.07.010
4 C. H. Lui, Z. Q. Li, Z. Y. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in fewlayer graphene, Nano Lett. 11(1), 164 (2011)
https://doi.org/10.1021/nl1032827
5 A. Torche, F. Mauri, J. C. Charlier, and M. Calandra, First-principles determination of the Raman fingerprint of rhombohedral graphite, Phys. Rev. Mater. 1(4), 041001 (2017)
https://doi.org/10.1103/PhysRevMaterials.1.041001
6 M. Koshino, Interlayer screening effect in graphene multilayers with ABA and ABC stacking, Phys. Rev. B 81(12), 125304 (2010)
https://doi.org/10.1103/PhysRevB.81.125304
7 R. J. Xiao, F. Tasnadi, K. Koepernik, J. W. F. Venderbos, M. Richter, and M. Taut, Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit, Phys. Rev. B 84(16), 165404 (2011)
https://doi.org/10.1103/PhysRevB.84.165404
8 K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato, and T. Takahashi, Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands, NPG Asia Mater. 10(2), e466 (2018)
https://doi.org/10.1038/am.2017.238
9 M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)
https://doi.org/10.1038/nnano.2009.89
10 M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Commun. 142(3), 123 (2007)
https://doi.org/10.1016/j.ssc.2007.02.013
11 C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)
12 W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)
13 P. San-Jose, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, and F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano Lett. 14(4), 2052 (2014)
https://doi.org/10.1021/nl500230a
14 L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
https://doi.org/10.1038/nature14364
15 I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
https://doi.org/10.1103/PhysRevLett.100.036804
16 G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)
https://doi.org/10.1103/PhysRevLett.101.087204
17 L. L. Jiang, Z. Shi, B. Zeng, S. Wang, J. H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)
https://doi.org/10.1038/nmat4653
18 L. J. Yin, W. X. Wang, Y. Zhang, Y. Y. Ou, H. T. Zhang, C. Y. Shen, and L. He, Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene, Phys. Rev. B 95, 081402 (2017)
https://doi.org/10.1103/PhysRevB.95.081402
19 L. L. Jiang, S. Wang, Z. Shi, C. Jin, M. I. B. Utama, S. Zhao, Y. R. Shen, H. J. Gao, G. Zhang, and F. Wang, Manipulation of domain-wall solitons in bi- and trilayer graphene, Nat. Nanotechnol. 13(3), 204 (2018)
https://doi.org/10.1038/s41565-017-0042-6
20 L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, One-dimensional electrical contact to a two-dimensional material, Science 342(6158), 614 (2013)
https://doi.org/10.1126/science.1244358
21 A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y. J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)
https://doi.org/10.1038/nnano.2014.187
22 S. K. Son, M. Šiškins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Taniguchi, D. Ghazaryan, K. S. Novoselov, V. I. Fal’ko, and A. Mishchenko, Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air, 2D Materials 5, 011006 (2018)
23 W. Zhang, J. Yan, C. H. Chen, L. Lei, J. L. Kuo, Z. Shen, and L. J. Li, Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene, Nat. Commun. 4(1), 2074 (2013)
https://doi.org/10.1038/ncomms3074
24 S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, Electron and optical phonon temperatures in electrically biased graphene, Phys. Rev. Lett. 104(22), 227401 (2010)
https://doi.org/10.1103/PhysRevLett.104.227401
25 C. S. G. Cousins, Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes, and phase transformation using transferred Keating parameters, Phys. Rev. B 67(2), 024110 (2003)
https://doi.org/10.1103/PhysRevB.67.024110
26 L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)
https://doi.org/10.1016/j.chemphys.2013.06.026
27 G. Berruto, I. Madan, Y. Murooka, G. M. Vanacore, E. Pomarico, J. Rajeswari, R. Lamb, P. Huang, A. J. Kruchkov, Y. Togawa, T. LaGrange, D. McGrouther, H. M. Rønnow, and F. Carbone, Laser-induced skyrmion writing and erasing in an ultrafast Cryo–Lorentz transmission electron microscope, Phys. Rev. Lett. 120(11), 117201 (2018)
https://doi.org/10.1103/PhysRevLett.120.117201
28 J. B. Hu, G. M. Vanacore, A. Cepellotti, N. Marzari, and A. H. Zewail, Rippling ultrafast dynamics of suspended 2D monolayers, graphene, Proc. Natl. Acad. Sci. USA 113(43), E6555 (2016)
https://doi.org/10.1073/pnas.1613818113
29 S. Fahy, S. G. Louie, and M. L. Cohen, Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond, Phys. Rev. B 34(2), 1191 (1986)
https://doi.org/10.1103/PhysRevB.34.1191
30 F. Isobe, H. Ohfuji, H. Sumiya, and T. Irifune, Nanolayered diamond sintered compact obtainedby direct conversion from highly oriented graphite under high pressure and high temperature, J. Nanomater. 2013, 380165 (2013)
https://doi.org/10.1155/2013/380165
31 R. K. Raman, Y. Murooka, C. Y. Ruan, T. Yang, S. Berber, and D. Tomanek, Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography, Phys. Rev. Lett. 101(7), 077401 (2008)
https://doi.org/10.1103/PhysRevLett.101.077401
32 F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)
https://doi.org/10.1126/science.1175005
33 R. Nuske, A. Jurgilaitis, H. Enquist, M. Harb, Y. Fang, U. Hakanson, and J. Larsson, Transforming graphite to nanoscale diamonds by a femtosecond laser pulse, Appl. Phys. Lett. 100(4), 043102 (2012)
https://doi.org/10.1063/1.3678190
34 S. A. Solin and A. K. Ramdas, Raman spectrum of diamond, Phys. Rev. B 1(4), 1687 (1970)
https://doi.org/10.1103/PhysRevB.1.1687
[1] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[2] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[3] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[4] Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy[J]. Front. Phys. , 2020, 15(1): 13401-.
[5] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[6] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[7] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[8] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[9] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[10] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[11] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[12] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[13] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[14] V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov. AC-current-induced magnetization switching in amorphous microwires[J]. Front. Phys. , 2018, 13(2): 137501-.
[15] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed