|
|
Quantum transport in topological semimetals under magnetic fields (II) |
Hai-Peng Sun1,2,3, Hai-Zhou Lu2,3( ) |
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China 2. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 3. Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China |
|
|
Abstract We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in topological semimetals and topological insulators by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals. We propose a new mechanism of 3D quantum Hall effect, via the “wormhole” tunneling through the Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields, longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.
|
Keywords
topological semimetal
topological insulator
quantum oscillation
negative magnetoresistance
quantum Hall effect
|
Corresponding Author(s):
Hai-Zhou Lu
|
Issue Date: 25 April 2019
|
|
1 |
H.-Z. Lu and S.-Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys.12, 127201 (2017)
https://doi.org/10.1007/s11467-016-0609-y
|
2 |
H. Z. Lu and S. Q. Shen, Weak antilocalization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B92, 035203 (2015)
https://doi.org/10.1103/PhysRevB.92.035203
|
3 |
X. Dai, H.-Z. Lu, S.-Q. Shen, and H. Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B93, 161110(R) (2016)
https://doi.org/10.1103/PhysRevB.93.161110
|
4 |
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, and J. N. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun.7, 10301 (2016)
https://doi.org/10.1038/ncomms10301
|
5 |
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
https://doi.org/10.1103/PhysRevB.92.045203
|
6 |
S.-B. Zhang, H.-Z. Lu, and S.-Q. Shen, Linear magnetoconductivity in an intrinsic topological Weyl semimetal, New J. Phys.18, 053039 (2016)
https://doi.org/10.1088/1367-2630/18/5/053039
|
7 |
C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett.119, 136806 (2017)
https://doi.org/10.1103/PhysRevLett.119.136806
|
8 |
C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett.117, 077201 (2016)
https://doi.org/10.1103/PhysRevLett.117.077201
|
9 |
C. Li, C. M. Wang, B. Wan, X. Wan, H.-Z. Lu, and X. C. Xie, Rules for phase shifts of quantum oscillations in topological nodal-line semimetals, Phys. Rev. Lett.120, 146602 (2018)
https://doi.org/10.1103/PhysRevLett.120.146602
|
10 |
X. Dai, Z. Z. Du, and H.-Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett.119, 166601 (2017)
https://doi.org/10.1103/PhysRevLett.119.166601
|
11 |
C.-L. Zhang, et al., Magnetic-tunnelling-induced Weyl node annihilation in TaP, Nat. Phys.13, 979 (2017)
https://doi.org/10.1038/nphys4183
|
12 |
Y. Chen, H.-Z. Lu, and X. C. Xie, Forbidden backscattering and resistance dip in the quantum limit as a signature for topological insulators, Phys. Rev. Lett.121, 036602 (2018)
https://doi.org/10.1103/PhysRevLett.121.036602
|
13 |
H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter28, 303001 (2016)
https://doi.org/10.1088/0953-8984/28/30/303001
|
14 |
B. Yan and C. Felser, Topological materials: Weyl semimetals, Ann. Rev. Condens. Matter Phys.8, 337 (2017)
https://doi.org/10.1146/annurev-conmatphys-031016-025458
|
15 |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys.90, 015001 (2018)
https://doi.org/10.1103/RevModPhys.90.015001
|
16 |
H. Wang and J. Wang, Electron transport in Dirac and Weyl semimetals, Chin. Phys. B27, 107402 (2018)
https://doi.org/10.1088/1674-1056/27/10/107402
|
17 |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83, 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
|
18 |
K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B84, 075129 (2011)
https://doi.org/10.1103/PhysRevB.84.075129
|
19 |
A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett.107, 127205 (2011)
https://doi.org/10.1103/PhysRevLett.107.127205
|
20 |
G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107, 186806 (2011)
https://doi.org/10.1103/PhysRevLett.107.186806
|
21 |
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL97, 67004 (2012)
https://doi.org/10.1209/0295-5075/97/67004
|
22 |
J.-H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A85, 033640 (2012)
https://doi.org/10.1103/PhysRevA.85.033640
|
23 |
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett.108, 140405 (2012)
https://doi.org/10.1103/PhysRevLett.108.140405
|
24 |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B85, 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
|
25 |
B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors, Phys. Rev. B86, 115208 (2012)
https://doi.org/10.1103/PhysRevB.86.115208
|
26 |
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88, 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
|
27 |
J. Liu and D. Vanderbilt, Weyl semimetals from noncentrosymmetric topological insulators, Phys. Rev. B90, 155316 (2014)
https://doi.org/10.1103/PhysRevB.90.155316
|
28 |
D. Bulmash, C.-X. Liu, and X.-L. Qi, Prediction of a Weyl semimetal in HgCdMnTe, Phys. Rev. B89, 081106 (2014)
https://doi.org/10.1103/PhysRevB.89.081106
|
29 |
Z. K. Liu, et al., Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science343, 864 (2014)
https://doi.org/10.1126/science.1245085
|
30 |
S. Y. Xu, et al., Observation of Fermi arc surface states in a topological metal, Science347, 294 (2015)
https://doi.org/10.1126/science.1256742
|
31 |
Z. K. Liu, et al., A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater.13, 677 (2014)
https://doi.org/10.1038/nmat3990
|
32 |
M. Neupane, et al., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun.5, 3786 (2014)
https://doi.org/10.1038/ncomms4786
|
33 |
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett.113, 027603 (2014)
https://doi.org/10.1103/PhysRevLett.113.027603
|
34 |
H. Yi, et al., Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2, Sci. Rep.4, 6106 (2014)
https://doi.org/10.1038/srep06106
|
35 |
C. Zhang, et al., Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun.8, 13741 (2017)
https://doi.org/10.1038/ncomms13741
|
36 |
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun.6, 10137 (2015)
https://doi.org/10.1038/ncomms10137
|
37 |
S. M. Huang, et al., A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun.6, 7373 (2015)
https://doi.org/10.1038/ncomms8373
|
38 |
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X5, 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
|
39 |
B. Q. Lv, et al., Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X5, 031013 (2015)
https://doi.org/10.1103/PhysRevX.5.031013
|
40 |
B. Q. Lv, et al., Observation of Weyl nodes in TaAs, Nat. Phys.11, 724 (2015)
https://doi.org/10.1038/nphys3426
|
41 |
B. Q. Lv, et al., Observation of Fermi-arc spin texture in TaAs, Phys. Rev. Lett.115, 217601 (2015)
https://doi.org/10.1103/PhysRevLett.115.217601
|
42 |
S. Y. Xu, et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349, 613 (2015)
https://doi.org/10.1126/science.aaa9297
|
43 |
L. X. Yang, et al., Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys.11, 728 (2015)
https://doi.org/10.1038/nphys3425
|
44 |
Z. K. Liu, et al., Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nat. Mater.15, 27 (2015)
https://doi.org/10.1038/nmat4457
|
45 |
C. L. Zhang, et al., Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl Fermion semimetal, Nat. Commun.7, 10735 (2016)
https://doi.org/10.1038/ncomms10735
|
46 |
X. C. Huang, et al., Observation of the chiralanomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5, 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
|
47 |
S.-Y. Xu, et al., Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys.11, 748 (2015)
https://doi.org/10.1038/nphys3437
|
48 |
N. Xu, et al., Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun.7, 11006 (2016)
https://doi.org/10.1038/ncomms11006
|
49 |
S.-Y. Xu, et al., Spin polarization and texture of the Fermi arcs in the Weyl fermion semimetal TaAs, Phys. Rev. Lett.116, 096801 (2016)
|
50 |
I. Belopolski, et al., Criteria for directly detecting topological Fermi arcs in Weyl semimetals, Phys. Rev. Lett.116, 066802 (2016)
https://doi.org/10.1103/PhysRevLett.116.066802
|
51 |
I. Belopolski, et al., Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1-xTe2, Phys. Rev. B94, 085127 (2016)
https://doi.org/10.1103/PhysRevB.94.085127
|
52 |
S.-Y. Xu, et al., Experimental discovery of a topological weyl semimetal state in tap, Sci. Adv.1, 10 (2015)
|
53 |
I. Belopolski, et al., Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points, Nat. Commun.8, 942 (2017)
https://doi.org/10.1038/s41467-017-00938-1
|
54 |
S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava, Time-reversal symmetry breaking type-II Weyl state in YbMnBi2, arXiv: 1507.04847 (2015)
|
55 |
M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater.15, 1161 (2016)
https://doi.org/10.1038/nmat4684
|
56 |
C. Felser and B. Yan, Weyl semimetals: Magnetically induced, Nat. Mater.15, 1149 (2016)
https://doi.org/10.1038/nmat4741
|
57 |
C. Shekhar, et al., Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd), Proc. Natl. Acad. Sci. USA115, 9140 (2018)
https://doi.org/10.1073/pnas.1810842115
|
58 |
S.-Q. Shen, Topological Insulators, 2nd Ed., Springer-Verlag, Berlin Heidelberg, 2017
|
59 |
R. Okugawa and S. Murakami, Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones, Phys. Rev. B89, 235315 (2014)
https://doi.org/10.1103/PhysRevB.89.235315
|
60 |
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
https://doi.org/10.1103/PhysRevB.92.045203
|
61 |
P. E. C. Ashby and J. P. Carbotte, Theory of magnetic oscillations in Weyl semimetals, Eur. Phys. J. B87 (2014)
https://doi.org/10.1140/epjb/e2014-50023-7
|
62 |
E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals, Phys. Rev. B89, 085126 (2014)
https://doi.org/10.1103/PhysRevB.89.085126
|
63 |
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, Phys. Rev. B81, 115407 (2010)
https://doi.org/10.1103/PhysRevB.81.115407
|
64 |
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater.13, 851 (2014)
https://doi.org/10.1038/nmat4023
|
65 |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B84, 235126 (2011)
https://doi.org/10.1103/PhysRevB.84.235126
|
66 |
C.-K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B90, 205136 (2014)
https://doi.org/10.1103/PhysRevB.90.205136
|
67 |
C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B25, 117106 (2016)
https://doi.org/10.1088/1674-1056/25/11/117106
|
68 |
B.-J. Yang, T. A. Bojesen, T. Morimoto, and A. Furusaki, Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals, Phys. Rev. B95, 075135 (2017)
https://doi.org/10.1103/PhysRevB.95.075135
|
69 |
Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett.15, 6974 (2015)
https://doi.org/10.1021/acs.nanolett.5b02978
|
70 |
T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature538, 75 (2016)
https://doi.org/10.1038/nature19099
|
71 |
X. Feng, C. Yue, Z. Song, Q. Wu, and B. Wen, Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2, Phys. Rev. Mater.2, 014202 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.014202
|
72 |
C.-J. Yi, et al., Observation of a nodal chain with Dirac surface states in TiB2, Phys. Rev. B97, 201107 (2018)
https://doi.org/10.1103/PhysRevB.97.201107
|
73 |
W. Chen, K. Luo, L. Li, and O. Zilberberg, Proposal for detecting nodal-line semimetal surface states with resonant spin-flipped reflection, Phys. Rev. Lett.121, 166802 (2018)
https://doi.org/10.1103/PhysRevLett.121.166802
|
74 |
Z. Zhu, et al., Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe, Nat. Commun.9, 4153 (2018)
https://doi.org/10.1038/s41467-018-06661-9
|
75 |
W. Chen and J. L. Lado, Interaction driven surface Chern insulator in nodal line semimetals, arXiv: 1807.06916 (2018)
https://doi.org/10.1103/PhysRevLett.122.016803
|
76 |
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B92, 045108 (2015)
https://doi.org/10.1103/PhysRevB.92.045108
|
77 |
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett.115, 036807 (2015)
https://doi.org/10.1103/PhysRevLett.115.036807
|
78 |
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett.115, 036806 (2015)
https://doi.org/10.1103/PhysRevLett.115.036806
|
79 |
C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B92, 081201 (2015)
https://doi.org/10.1103/PhysRevB.92.081201
|
80 |
Y. Chen, Y.-M. Lu, and H.-Y. Kee, Topological crystalline metal in orthorhombic perovskite iridates, Nat. Commun.6, 6593 (2015)
https://doi.org/10.1038/ncomms7593
|
81 |
G. Bian, et al., Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B93, 121113 (2016)
https://doi.org/10.1103/PhysRevB.93.121113
|
82 |
L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes, APL Mater.3, 083602 (2015)
https://doi.org/10.1063/1.4926545
|
83 |
Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B93, 205132 (2016)
https://doi.org/10.1103/PhysRevB.93.205132
|
84 |
Y. Du, F. Tang, D. Wang, L. Sheng, E.-j. Kan, C.-G. Duan, S. Y. Savrasov, and X. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quantum Mater.2, 3 (2017)
https://doi.org/10.1038/s41535-016-0005-4
|
85 |
J. Zhao, R. Yu, H. Weng, and Z. Fang, Topological nodeline semimetal in compressed black phosphorus, Phys. Rev. B94, 195104 (2016)
https://doi.org/10.1103/PhysRevB.94.195104
|
86 |
A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X= P, As), J. Phys. Soc. Japan85, 013708 (2015)
https://doi.org/10.7566/JPSJ.85.013708
|
87 |
Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals in the CaP3 family of materials, Phys.Rev. B95, 045136 (2017)
https://doi.org/10.1103/PhysRevB.95.045136
|
88 |
Y.-J. Jin, R. Wang, J.-Z. Zhao, Y.-P. Du, C.-D. Zheng, L.-Y. Gan, J.-F. Liu, H. Xu, and S. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale9, 13112 (2017)
https://doi.org/10.1039/C7NR03520A
|
89 |
Z. Zhu, M. Li, and J. Li, Topological semimetal to insulator quantum phase transition in the Zintl compounds Ba2X (X=Si,Ge), Phys. Rev. B94, 155121 (2016)
https://doi.org/10.1103/PhysRevB.94.155121
|
90 |
Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries, Phys. Rev. B93, 085427 (2016)
https://doi.org/10.1103/PhysRevB.93.085427
|
91 |
M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin, and L. Fu, Topological semimetals and topological insulators in rare earth monopnictides, arXiv: 1504.03492 (2015)
|
92 |
M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topological Dirac nodal lines and surface charges in fcc alkaline earth metals, Nat Commun.8, 14022 (2017)
https://doi.org/10.1038/ncomms14022
|
93 |
H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides, Phys. Rev. B93, 201114 (2016)
https://doi.org/10.1103/PhysRevB.93.201114
|
94 |
R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and X.-Q. Chen, Dirac node lines in pure alkali earth metals, Phys. Rev. Lett.117, 096401 (2016)
https://doi.org/10.1103/PhysRevLett.117.096401
|
95 |
J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett.116, 195501 (2016)
https://doi.org/10.1103/PhysRevLett.116.195501
|
96 |
Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Dirac nodal lines and induced spin Hall effect in metallic rutile oxides, Phys. Rev. B95, 235104 (2017)
https://doi.org/10.1103/PhysRevB.95.235104
|
97 |
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun.7, 11696 (2016)
https://doi.org/10.1038/ncomms11696
|
98 |
M. Neupane, et al., Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B93, 201104 (2016)
https://doi.org/10.1103/PhysRevB.93.201104
|
99 |
C. Chen, et al., Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M=Hf,Zr), Phys. Rev. B95, 125126 (2017)
https://doi.org/10.1103/PhysRevB.95.125126
|
100 |
G. Bian, et al., Topological nodal-line fermions in spinorbit metal PbTaSe2, Nat. Commun.7, 10556 (2016)
https://doi.org/10.1038/ncomms10556
|
101 |
T.-R. Chang, et al., Topological Dirac surface states and superconducting pairing correlations in PbTaSe2, Phys. Rev. B93, 245130 (2016)
https://doi.org/10.1103/PhysRevB.93.245130
|
102 |
S. A. Ekahana, et al., Observation of nodal line in nonsymmorphic topological semimetal InBi, New J. Phys.19, 065007 (2017)
https://doi.org/10.1088/1367-2630/aa75a1
|
103 |
Y. Wu, L.-L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys.12, 667 (2016)
https://doi.org/10.1038/nphys3712
|
104 |
A. Alexandradinata and L. Glazman, Semiclassical theory of Landau levels and magnetic breakdown in topological metals, Phys. Rev. B97, 144422 (2018)
https://doi.org/10.1103/PhysRevB.97.144422
|
105 |
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5, 438 (2009)
https://doi.org/10.1038/nphys1270
|
106 |
I. A. Nechaev and E. E. Krasovskii, Relativistic k·p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions, Phys. Rev. B94, 201410 (2016)
https://doi.org/10.1103/PhysRevB.94.201410
|
107 |
W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, Effective continuous model for surface states and thin films of threedimensional topological insulators, New J. Phys.12, 043048 (2010)
https://doi.org/10.1088/1367-2630/12/4/043048
|
108 |
Y. Zhang, et al., Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys.6, 584 (2010)
https://doi.org/10.1038/nphys1689
|
109 |
J. Wang, et al., Anomalous anisotropic magnetoresistance in topological insulator films, Nano Res.5, 739 (2012)
https://doi.org/10.1007/s12274-012-0260-z
|
110 |
H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, and J. N. Wang, Disorder-induced linear magnetoresistance in (221) topological insulator Bi2Se3 films, Appl. Phys. Lett.103, 031606 (2013)
https://doi.org/10.1063/1.4816078
|
111 |
S. Wiedmann, et al., Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3, Phys. Rev. B94, 081302 (2016)
https://doi.org/10.1103/PhysRevB.94.081302
|
112 |
L.-X. Wang, Y. Yan, L. Zhang, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons, Nanoscale7, 16687 (2015)
https://doi.org/10.1039/C5NR05250E
|
113 |
S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177, 2426 (1969)
https://doi.org/10.1103/PhysRev.177.2426
|
114 |
J. S. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Il Nuovo Cimento A60, 47 (1969)
https://doi.org/10.1007/BF02823296
|
115 |
H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (i): Proof by homotopy theory, Nucl. Phys. B185, 20 (1981)
https://doi.org/10.1016/0550-3213(81)90361-8
|
116 |
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett.111, 246603 (2013)
https://doi.org/10.1103/PhysRevLett.111.246603
|
117 |
K.-S. Kim, H.-J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B89, 195137 (2014)
https://doi.org/10.1103/PhysRevB.89.195137
|
118 |
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys.12, 550 (2016)
https://doi.org/10.1038/nphys3648
|
119 |
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science350, 413 (2015)
https://doi.org/10.1126/science.aac6089
|
120 |
F. Arnold, et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun.7, 11615 (2016)
https://doi.org/10.1038/ncomms11615
|
121 |
X. J. Yang, Y. P. Liu, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
|
122 |
X. Yang, Y. Li, Z. Wang, Y. Zhen, and Z.-A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semi-metal NbAs, arXiv: 1506.02283 (2015)
|
123 |
H. Wang, et al., Chiral anomaly and ultrahigh mobility in crystalline HfTe5, Phys. Rev. B93, 165127 (2016)
https://doi.org/10.1103/PhysRevB.93.165127
|
124 |
O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, and Y. Ando, Gigantic negative magnetoresistance in the bulk of a disordered topological insulator, Nat. Commun.8, 15545 (2017)
https://doi.org/10.1038/ncomms15545
|
125 |
B. A. Assaf, et al., Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topological materials, Phys. Rev. Lett.119, 106602 (2017)
https://doi.org/10.1103/PhysRevLett.119.106602
|
126 |
M. Zhang, et al., Topological phase transition-induced triaxial vector magnetoresistance in (Bi1-xInx)2Se3 nanodevices, ACS Nano12, 1537 (2018)
https://doi.org/10.1021/acsnano.7b08054
|
127 |
C. Fleckenstein, N. Traverso Ziani, and B. Trauzettel, Chiral anomaly in real space from stable fractional charges at the edge of a quantum spin hall insulator, Phys. Rev. B94, 241406 (2016)
https://doi.org/10.1103/PhysRevB.94.241406
|
128 |
A. Wolos, et al., g-factors of conduction electrons and holes in Bi2Se3 three-dimensional topological insulator, Phys. Rev. B93, 155114 (2016)
https://doi.org/10.1103/PhysRevB.93.155114
|
129 |
D. Culcer, Transport in three-dimensional topological insulators: Theory and experiment, Physica E44, 860 (2012)
https://doi.org/10.1016/j.physe.2011.11.003
|
130 |
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59, 14915 (1999)
https://doi.org/10.1103/PhysRevB.59.14915
|
131 |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82, 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
|
132 |
G. D. Mahan, Many-Particle Physics, Plenum Press, 1990
https://doi.org/10.1007/978-1-4613-1469-1
|
133 |
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88, 104412 (2013)
https://doi.org/10.1103/PhysRevB.88.104412
|
134 |
S.-K. Yip, Kinetic equation and magneto-conductance for Weyl metal in the clean limit, arXiv: 1508.01010 (2015)
|
135 |
A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett.113, 247203 (2014)
https://doi.org/10.1103/PhysRevLett.113.247203
|
136 |
S. Mao, A. Yamakage, and Y. Kuramoto, Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone, Phys. Rev. B84, 115413 (2011)
https://doi.org/10.1103/PhysRevB.84.115413
|
137 |
J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Quantum interference in macroscopic crystals of nonmetallic Bi2Se3, Phys. Rev. Lett.103, 246601 (2009)
https://doi.org/10.1103/PhysRevLett.103.246601
|
138 |
J.Chen, et al., Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett.105, 176602 (2010)
https://doi.org/10.1103/PhysRevLett.105.176602
|
139 |
J. Wang, A. M. DaSilva, C.-Z. Chang, K. He, J. K. Jain, N. Samarth, X.-C. Ma, Q.-K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films, Phys. Rev. B83, 245438 (2011)
https://doi.org/10.1103/PhysRevB.83.245438
|
140 |
H.-T. He, G. Wang, T. Zhang, I.-K. Sou, G. K. L. Wong, J.-N. Wang, H.-Z. Lu, S.-Q. Shen, and F.-C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett.106, 166805 (2011)
https://doi.org/10.1103/PhysRevLett.106.166805
|
141 |
H. Köhler and E. Wöchner, The g-factor of the conduction electrons in Bi2Se3, physica status solidi (b)67, 665 (1975)
https://doi.org/10.1002/pssb.2220670229
|
142 |
A. Srinivasan, K. L. Hudson, D. Miserev, L. A. Yeoh, O. Klochan, K. Muraki, Y. Hirayama, O. P. Sushkov, and A. R. Hamilton, Electrical control of the sign of the g factor in a GaAs hole quantum point contact, Phys. Rev. B94, 041406 (2016)
https://doi.org/10.1103/PhysRevB.94.041406
|
143 |
T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals, Phys. Rev. B94, 245121 (2016)
https://doi.org/10.1103/PhysRevB.94.245121
|
144 |
Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B95, 165135 (2017)
https://doi.org/10.1103/PhysRevB.95.165135
|
145 |
Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett.112, 166601 (2014)
https://doi.org/10.1103/PhysRevLett.112.166601
|
146 |
Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B91, 214405 (2015)
https://doi.org/10.1103/PhysRevB.91.214405
|
147 |
P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal, Phys. Rev. B92, 075205 (2015)
https://doi.org/10.1103/PhysRevB.92.075205
|
148 |
R. D. dos Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance, New J. Phys.18, 085006 (2016)
https://doi.org/10.1088/1367-2630/18/8/085006
|
149 |
A. V. Andreev and B. Z. Spivak, Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors, Phys. Rev. Lett.120, 026601 (2018)
https://doi.org/10.1103/PhysRevLett.120.026601
|
150 |
H. Ishizuka and N. Nagaosa, Robustness of anomalyrelated magnetoresistance in doped Weyl semimetals, arXiv: 1808.09093 (2018)
|
151 |
D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
https://doi.org/10.1017/CBO9780511897870
|
152 |
G. P. Mikitik and Y. V. Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82, 2147 (1999)
https://doi.org/10.1103/PhysRevLett.82.2147
|
153 |
I. M. Lifshitz and A. M. Kosevich, Theory of magnetic susceptibility in metals at low temperatures, Sov. Phys. JETP2, 636 (1956)
|
154 |
D. Shoenberg, The Fermi surfaces of copper, silver and gold. I. the de Haas–van Alphen effect, Phil. Trans. R. Soc. Lond. A255, 85 (1962)
https://doi.org/10.1098/rsta.1962.0011
|
155 |
P. T. Coleridge and I. M. Templeton, High precision de Haas–van Alphen measurements in the noble metals, J. Phys. F: Metal Phys.2, 643 (1972)
https://doi.org/10.1088/0305-4608/2/4/009
|
156 |
I. A. Luk’yanchuk and Y. Kopelevich, Phase analysis of quantum oscillations in graphite, Phys. Rev. Lett.93, 166402 (2004)
https://doi.org/10.1103/PhysRevLett.93.166402
|
157 |
G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford, 2003
|
158 |
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438, 201 (2005)
https://doi.org/10.1038/nature04235
|
159 |
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science342, 1490 (2013)
https://doi.org/10.1126/science.1242247
|
160 |
L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett.113, 246402 (2014)`
https://doi.org/10.1103/PhysRevLett.113.246402
|
161 |
M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B91, 041203(R) (2015)
https://doi.org/10.1103/PhysRevB.91.041203
|
162 |
Y. F. Zhao, et al., Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X5, 031037 (2015)
https://doi.org/10.1103/PhysRevX.5.031037
|
163 |
J. Du, et al., Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP, Sci. China-Phys. Mech. Astron.59, 657406 (2016)
https://doi.org/10.1007/s11433-016-5798-4
|
164 |
Z. Wang, et al., Helicity-protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93, 121112(R) (2016)
https://doi.org/10.1103/PhysRevB.93.121112
|
165 |
J. Cao, et al., Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun.6, 7779 (2015)
https://doi.org/10.1038/ncomms8779
|
166 |
C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: an exotic compensated semimetal, arXiv: 1502.00251 (2015)
|
167 |
A. Narayanan, et al., Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett.114, 117201 (2015)
https://doi.org/10.1103/PhysRevLett.114.117201
|
168 |
J. Park, et al., Anisotropic Dirac Fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett.107, 126402 (2011)
https://doi.org/10.1103/PhysRevLett.107.126402
|
169 |
F.-X. Xiang, X.-L. Wang, M. Veldhorst, S.-X. Dou, and M. S. Fuhrer, Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl, Phys. Rev. B92, 035123 (2015)
https://doi.org/10.1103/PhysRevB.92.035123
|
170 |
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, and R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb, Nat. Phys.12, 272 (2016)
https://doi.org/10.1038/nphys3581
|
171 |
Y. Luo, N. J. Ghimire, M. Wartenbe, H. Choi, M. Neupane, R. D. McDonald, E. D. Bauer, J. Zhu, J. D. Thompson, and F. Ronning, Electron–hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs, Phys. Rev. B92, 205134 (2015)
https://doi.org/10.1103/PhysRevB.92.205134
|
172 |
F. Arnold, M. Naumann, S.-C. Wu, Y. Sun, M. Schmidt, H. Borrmann, C. Felser, B. Yan, and E. Hassinger, Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs, Phys. Rev. Lett.117, 146401 (2016)
https://doi.org/10.1103/PhysRevLett.117.146401
|
173 |
J. Klotz, et al., Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93, 121105 (2016)
https://doi.org/10.1103/PhysRevB.93.121105
|
174 |
R. D. dos Reis, S. C. Wu, Y. Sun, M. O. Ajeesh, C. Shekhar, M. Schmidt, C. Felser, B. Yan, and M. Nicklas, Pressure tuning the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93, 205102 (2016)
https://doi.org/10.1103/PhysRevB.93.205102
|
175 |
P. Sergelius, et al., Berry phase and band structure analysis of the Weyl semimetal NbP, Sci. Rep.6, 33859 (2016)
https://doi.org/10.1038/srep33859
|
176 |
N. Kumar, K. Manna, Y. Qi, S.-C. Wu, L. Wang, B. Yan, C. Felser, and C. Shekhar, Unusual magnetotransport from Si-square nets in topological semimetal HfSiS, Phys. Rev. B95, 121109 (2017)
https://doi.org/10.1103/PhysRevB.95.121109
|
177 |
R. Singha, A. K. Pariari, B. Satpati, and P. Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA114, 2468 (2017)
https://doi.org/10.1073/pnas.1618004114
|
178 |
M. N. Ali, L. M. Schoop, C. Garg, J. M. Lippmann, E. Lara, B. Lotsch, and S. S. P. Parkin, Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS, Sci. Adv.2, e1601742 (2016)
https://doi.org/10.1126/sciadv.1601742
|
179 |
X. Wang, et al., Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS, Adv. Electron. Mater.2, 1600228 (2016)
https://doi.org/10.1002/aelm.201600228
|
180 |
Y.-Y. Lv, B.-B. Zhang, X. Li, S.-H. Yao, Y. B. Chen, J. Zhou, S.-T. Zhang, M.-H. Lu, and Y.-F. Chen, Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals, App. Phys. Lett.108, 244101 (2016)
https://doi.org/10.1063/1.4953772
|
181 |
J. Hu, Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations, Phys. Rev. B96, 045127 (2017)
https://doi.org/10.1103/PhysRevB.96.045127
|
182 |
H. Pan, et al., Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe, Sci. Rep.8, 9340 (2018)
https://doi.org/10.1038/s41598-018-27148-z
|
183 |
J. Hu, et al., Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett. 117, 016602 (2016)
https://doi.org/10.1103/PhysRevLett.117.016602
|
184 |
J. Hu, Y. L. Zhu, D. Graf, Z. J. Tang, J. Y. Liu, and Z. Q. Mao, Quantum oscillation studies of the topological semimetal candidate ZrGeM (M=S, Se, Te), Phys. Rev. B95, 205134 (2017)
https://doi.org/10.1103/PhysRevB.95.205134
|
185 |
M. Charbonneau, K. M. van Vliet, and P. Vasilopoulos, Linear response theory revisited III: One-body response formulas and generalized Boltzmann equations, J. Math. Phys.23, 318 (1982)
https://doi.org/10.1063/1.525355
|
186 |
P. Vasilopoulos and C. Van Vliet, Linear response theory revisited (IV): Applications, J. Math. Phys.25, 1391 (1984)
https://doi.org/10.1063/1.526309
|
187 |
C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B86, 035442 (2012)
https://doi.org/10.1103/PhysRevB.86.035442
|
188 |
C. M. Wang and X. L. Lei, Linear magnetotransport in monolayer MoS2, Phys. Rev. B92, 125303 (2015)
https://doi.org/10.1103/PhysRevB.92.125303
|
189 |
D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science329, 821 (2010)
https://doi.org/10.1126/science.1189792
|
190 |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
|
191 |
F. T. Vasko and O. E. Raichev, Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons, Springer Science & Business Media, 2006
|
192 |
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B58, 2788 (1998)
https://doi.org/10.1103/PhysRevB.58.2788
|
193 |
J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. J. Cava, and N. P. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL114, 27002 (2016)
https://doi.org/10.1209/0295-5075/114/27002
|
194 |
J. Hu, et al., π Berry phase and Zeeman splitting of TaP probed by high field magnetotransport measurements, Sci. Rep.6, 18674 (2016)
https://doi.org/10.1038/srep18674
|
195 |
L. Onsager, Interpretation of the de Haas–van Alphen effect, Philos. Mag.43, 1006 (1952)
https://doi.org/10.1080/14786440908521019
|
196 |
M. Phillips and V. Aji, Tunable line node semimetals, Phys. Rev. B90, 115111 (2014)
https://doi.org/10.1103/PhysRevB.90.115111
|
197 |
W. Chen, H.-Z. Lu, and O. Zilberberg, Weak localization and antilocalization in nodal-line semimetals: Dimensionality and topological effects, arXiv: 1902.06921 (2019)
|
198 |
K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett.45, 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
|
199 |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett.49, 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
|
200 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438, 197 (2005)
https://doi.org/10.1038/nature04233
|
201 |
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys.10, 956 (2014)
https://doi.org/10.1038/nphys3140
|
202 |
R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators, Nat. Commun.6, 8530 (2015)
https://doi.org/10.1038/ncomms9530
|
203 |
M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topological-metal to band-insulator transition in (Bi1-xInx)2Se3 thin films, Phys. Rev. Lett.109, 186403 (2012)
https://doi.org/10.1103/PhysRevLett.109.186403
|
204 |
L. Wu, M. Brahlek, R. Valdes Aquilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, A sudden collapse in the transport lifetime across the topological phase transition in (Bi1-xInx)2Se3, Nat. Phys.9, 410 (2013)
https://doi.org/10.1038/nphys2647
|
205 |
P. Hosur, Friedel oscillations due to Fermi arcs in Weyl semimetals, Phys. Rev. B86, 195102 (2012)
https://doi.org/10.1103/PhysRevB.86.195102
|
206 |
Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern, Current at a distance and resonant transparency in Weyl semimetals, Phys. Rev. X5, 041046 (2015)
https://doi.org/10.1103/PhysRevX.5.041046
|
207 |
E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B93, 235127 (2016)
https://doi.org/10.1103/PhysRevB.93.235127
|
208 |
Y. Ominato and M. Koshino, Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states, Phys. Rev. B93, 245304 (2016)
https://doi.org/10.1103/PhysRevB.93.245304
|
209 |
T. M. McCormick, S. J. Watzman, J. P. Heremans, and N. Trivedi, Fermi arc mediated entropy transport in topological semimetals, Phys. Rev. B97, 195152 (2018)
https://doi.org/10.1103/PhysRevB.97.195152
|
210 |
C. Shekhar, et al., Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal NbP, Nat. Phys.11, 645 (2015)
https://doi.org/10.1038/nphys3372
|
211 |
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14, 280 (2015)
https://doi.org/10.1038/nmat4143
|
212 |
P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature535, 266 (2016)
https://doi.org/10.1038/nature18276
|
213 |
G. Rosenberg, H.-M. Guo, and M. Franz, Wormhole effect in a strong topological insulator, Phys. Rev. B82, 041104 (2010)
https://doi.org/10.1103/PhysRevB.82.041104
|
214 |
J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun.7, 11136 (2016)
https://doi.org/10.1038/ncomms11136
|
215 |
A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun.5, 5161 (2014)
https://doi.org/10.1038/ncomms6161
|
216 |
M. Uchida, et al., Quantum Hall effect in Cd3As2 films, APS March Meeting A44.00005 (2017)
|
217 |
M. Uchida, et al., Quantum Hall states observed in thin films of Dirac semimetal Cd3As2, Nat. Commun8, 2274 (2017)
https://doi.org/10.1038/s41467-017-02423-1
|
218 |
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett.120, 016801 (2018)
https://doi.org/10.1103/PhysRevLett.120.016801
|
219 |
C. Zhang, et al., Quantum Hall effect based on Weyl orbit in Cd3As2, Nature565, 331 (2019)
https://doi.org/10.1038/s41586-018-0798-3
|
220 |
V. P. Gusynin and S. G. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett.95, 146801 (2005)
https://doi.org/10.1103/PhysRevLett.95.146801
|
221 |
A. A. Zyuzin and A. A. Burkov, Thin topological insulator film in a perpendicular magnetic field, Phys. Rev. B83, 195413 (2011)
https://doi.org/10.1103/PhysRevB.83.195413
|
222 |
S. B. Zhang, Y. Y. Zhang, and S. Q. Shen, Robustness of quantum spin Hall effect in an external magnetic field, Phys. Rev. B90, 115305 (2014)
https://doi.org/10.1103/PhysRevB.90.115305
|
223 |
S. B. Zhang, H. Z. Lu, and S. Q. Shen, Edge states and integer quantum Hall effect in topological insulator thin films, Sci. Rep.5, 13277 (2015)
https://doi.org/10.1038/srep13277
|
224 |
A. Pertsova, C. M. Canali, and A. H. MacDonald, Quantum Hall edge states in topological insulator nanoribbons, Phys. Rev. B94, 121409 (2016)
https://doi.org/10.1103/PhysRevB.94.121409
|
225 |
H. Zheng, et al., Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy, ACS Nano10, 1378 (2016)
https://doi.org/10.1021/acsnano.5b06807
|
226 |
E. Y. Ma, et al., Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry, Nat. Commun.6, 7252 (2015)
https://doi.org/10.1038/ncomms8252
|
227 |
M. Kargarian, M. Randeria, and Y.-M. Lu, Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl. Acad. Sci. USA113, 8648 (2016)
https://doi.org/10.1073/pnas.1524787113
|
228 |
J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and B. A. Bernevig, Chiral anomaly factory: Creating Weyl fermions with a magnetic field, Phys. Rev. B95, 161306 (2017)
https://doi.org/10.1103/PhysRevB.95.161306
|
229 |
S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field, Phys. Rev. Lett.92, 256603 (2004)
https://doi.org/10.1103/PhysRevLett.92.256603
|
230 |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.82, 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
|
231 |
X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83, 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
232 |
R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science329, 61 (2010)
https://doi.org/10.1126/science.1187485
|
233 |
C.-Z. Chang, et al., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science340, 167 (2013)
https://doi.org/10.1126/science.1234414
|
234 |
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett.100, 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
|
235 |
A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Electrically detected interferometry of Majorana fermions in a topological insulator, Phys. Rev. Lett.102, 216404 (2009)
https://doi.org/10.1103/PhysRevLett.102.216404
|
236 |
I. Belopolski, et al., A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases, Sci. Adv.3, 3 (2017)
https://doi.org/10.1126/sciadv.1501692
|
237 |
C.-K. Chiu, G. Bian, H. Zheng, J.-X. Yin, S. S. Zhang, D. S. Sanchez, I. Belopolski, S.-Y. Xu, and M. Z. Hasan, Chiral majorana fermion modes on the surface of superconducting topological insulators, EPL123, 47005 (2018)
https://doi.org/10.1209/0295-5075/123/47005
|
238 |
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science318, 766 (2007)
https://doi.org/10.1126/science.1148047
|
239 |
B. Büttner, et al., Single valley Dirac fermions in zero-gap HgTe quantum wells, Nat. Phys.7, 418 (2011)
https://doi.org/10.1038/nphys1914
|
240 |
A. Mani and C. Benjamin, Probing helicity and the topological origins of helicity via non-local Hanbury–Brown and Twiss correlations, Sci. Rep.7, 6954 (2017)
https://doi.org/10.1038/s41598-017-06820-w
|
241 |
H. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X4, 011002 (2014)
https://doi.org/10.1103/PhysRevX.4.011002
|
242 |
Y. Liu, et al., Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun.7, 12516 (2016)
https://doi.org/10.1038/ncomms12516
|
243 |
W. Zhang, R. Yu, W. Feng, Y. Yao, H. Weng, X. Dai, and Z. Fang, Topological aspect and quantum magnetoresistance of β-Ag2Te, Phys. Rev. Lett.106, 156808 (2011)
https://doi.org/10.1103/PhysRevLett.106.156808
|
244 |
H.-Z. Lu, J. Shi, and S.-Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett.107, 076801 (2011)
https://doi.org/10.1103/PhysRevLett.107.076801
|
245 |
H.-W. Wang, B. Fu, and S.-Q. Shen, Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density, Phys. Rev. B98, 081202 (2018)
https://doi.org/10.1103/PhysRevB.98.081202
|
246 |
A. Alexandradinata and L. Glazman, Geometric phase and orbital moment in quantization rules for magnetic breakdown, Phys. Rev. Lett.119, 256601 (2017)
https://doi.org/10.1103/PhysRevLett.119.256601
|
247 |
A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, Revealing the topology of fermi-surface wave functions from magnetic quantum oscillations, Phys. Rev. X8, 011027 (2018)
https://doi.org/10.1103/PhysRevX.8.011027
|
248 |
J. Höller and A. Alexandradinata, Topological Bloch oscillations, Phys. Rev. B98, 024310 (2018)
https://doi.org/10.1103/PhysRevB.98.024310
|
249 |
T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal, Phys. Rev. Lett.116, 236401 (2016)
https://doi.org/10.1103/PhysRevLett.116.236401
|
250 |
F. Fei, et al., Nontrivial berry phase and type-ii dirac transport in the layered material PdTe2, Phys. Rev. B96, 041201 (2017)
https://doi.org/10.1103/PhysRevB.96.041201
|
251 |
H. Yang, R. Moessner, and L.-K. Lim, Quantum oscillations in nodal line systems, Phys. Rev. B97, 165118 (2018)
https://doi.org/10.1103/PhysRevB.97.165118
|
252 |
L. Oroszlány, B. Dóra, J. Cserti, and A. Cortijo, Topological and trivial magnetic oscillations in nodal loop semimetals, Phys. Rev. B97, 205107 (2018)
https://doi.org/10.1103/PhysRevB.97.205107
|
253 |
C. Zhang, et al., Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2, Nat. Commun.8, 1272 (2017)
https://doi.org/10.1038/s41467-017-01438-y
|
254 |
Y. Zhang, D. Bulmash, P. Hosur, A. C. Potter, and A. Vishwanath, Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals, Sci. Rep.6, 23741 (2016)
https://doi.org/10.1038/srep23741
|
255 |
B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Japanese J. Appl. Phys.26, 1913 (1987)
https://doi.org/10.7567/JJAPS.26S3.1913
|
256 |
F. Tang, et al., Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5, arXiv: 1807.02678 (2018)
|
257 |
H.-Z. Lu, Perspective: 3D quantum Hall effect, Natl. Sci. Rev., nwy082 (2018)
|
258 |
H. Wang, et al., Discovery of log-periodic oscillations in ultraquantum topological materials, Sci. Adv.4, 11 (2018)
https://doi.org/10.1126/sciadv.aau5096
|
259 |
H. Wang, et al., Log-periodic quantum magnetooscillations and discrete scale invariance in topological material HfTe5, arXiv: 1810.03109 (2018)
|
260 |
P. Zhang and H. Zhai, Efimov effect in Dirac semi-metals, Front. Phys.13, 137204 (2018)
https://doi.org/10.1007/s11467-018-0800-4
|
261 |
H. Liu, H. Jiang, Z. Wang, R. Joynt, and X. C. Xie, Discrete scale invariance in topological semimetals, arXiv: 1807.02459 (2018)
|
262 |
H. Weng, C. Fang, Z. Fang, and X. Dai, Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride, Phys. Rev. B93, 241202 (2016)
https://doi.org/10.1103/PhysRevB.93.241202
|
263 |
H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B94, 165201 (2016)
https://doi.org/10.1103/PhysRevB.94.165201
|
264 |
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science353 (2016)
https://doi.org/10.1126/science.aaf5037
|
265 |
G. Chang, et al., Nexus fermions in topological symmorphic crystalline metals, Sci. Rep.7, 1688 (2017)
https://doi.org/10.1038/s41598-017-01523-8
|
266 |
B. Q. Lv, et al., Observation of three-component fermions in the topological semimetal molybdenum phosphide, Nature546, 627 (2017)
https://doi.org/10.1038/nature22390
|
267 |
J.-Z. Ma, et al., Three-component fermions with surface Fermi arcs in tungsten carbide, Nat. Phys.14, 349 (2018)
https://doi.org/10.1038/s41567-017-0021-8
|
268 |
J. B. He, D. Chen, W. L. Zhu, S. Zhang, L. X. Zhao, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the triply degenerate node topological semimetal tungsten carbide, Phys. Rev. B95, 195165 (2017)
https://doi.org/10.1103/PhysRevB.95.195165
|
269 |
W. L. Zhu, J. B. He, S. Zhang, D. Chen, L. Shan, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the new-type topological semimetal ZrTe, arXiv: 1707.00942 (2017)
|
270 |
C. Shekhar, et al., Extremely high conductivity observed in the unconventional triple point fermion material MoP, arXiv: 1703.03736 (2017)
|
271 |
A. K. Nayak, et al., Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci. Adv.2, 4 (2016)
https://doi.org/10.1126/sciadv.1501870
|
272 |
Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversalbreaking Weyl fermions in magnetic Heusler alloys, Phys. Rev. Lett.117, 236401 (2016)
https://doi.org/10.1103/PhysRevLett.117.236401
|
273 |
G. Chang, et al., Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn), Sci. Rep.6, 38839 (2016)
https://doi.org/10.1038/srep38839
|
274 |
S. Nie, G. Xu, F. B. Prinz, and S.-C. Zhang, Topological semimetal in honeycomb lattice LnSI, Proc. Natl. Acad. Sci. USA114, 10596 (2017)
https://doi.org/10.1073/pnas.1713261114
|
275 |
H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. S. P. Parkin, and B. Yan, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys.19, 015008 (2017)
https://doi.org/10.1088/1367-2630/aa5487
|
276 |
E. Liu, et al., Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nat. Phys.14, 1125 (2018)
https://doi.org/10.1038/s41567-018-0234-5
|
277 |
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun.9, 3681 (2018)
https://doi.org/10.1038/s41467-018-06088-2
|
278 |
S. N. Guin, et al., Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa, arXiv: 1806.06753 (2018)
|
279 |
G. Chang, et al., Magnetic and noncentrosymmetric weyl fermion semimetals in the RAlGe family of compounds (R=rare earth), Phys. Rev. B97, 041104 (2018)
https://doi.org/10.1103/PhysRevB.97.041104
|
280 |
J.-X. Yin, et al., Giant and anisotropic many-body spinorbit tunability in a strongly correlated kagome magnet, Nature562, 91 (2018)
https://doi.org/10.1038/s41586-018-0502-7
|
281 |
S.-M. Huang, et al., New type of Weyl semimetal with quadratic double Weyl fermions, Proc. Natl. Acad. Sci. USA113, 1180 (2016)
https://doi.org/10.1073/pnas.1514581113
|
282 |
A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature527, 495 (2015)
https://doi.org/10.1038/nature15768
|
283 |
K. Deng, et al., Experimental observation of topological fermi arcs in type-II Weyl semimetal MoTe2, Nat. Phys.12, 1105 (2016)
https://doi.org/10.1038/nphys3871
|
284 |
J. Jiang, et al., Signature of type-II Weyl semimetal phase in MoTe2, Nat. Commun.8, 13973 (2017)
https://doi.org/10.1038/ncomms13973
|
285 |
Y. Wang, et al., Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2, Nat. Commun.7, 13142 (2016)
https://doi.org/10.1038/ncomms13142
|
286 |
E. Zhang, et al., Tunable positive to negative magnetoresistance in atomically thin WTe2, Nano Lett.17, 878 (2017)
https://doi.org/10.1021/acs.nanolett.6b04194
|
287 |
D. Chen, et al., Magnetotransport properties of the type-II Weyl semimetal candidate Ta3S2, Phys. Rev. B94, 174411 (2016)
|
288 |
S. Khim, et al., Magnetotransport and de Haas–van Alphen measurements in the type-II Weyl semimetal TaIrTe4, Phys. Rev. B94, 165145 (2016)
https://doi.org/10.1103/PhysRevB.94.165145
|
289 |
S.-Y. Xu, et al., Discovery of lorentz-violating type II Weyl fermions in laalge, Sci. Adv.3, 6 (2017)
https://doi.org/10.1126/sciadv.1603266
|
290 |
I. Belopolski, et al., Discovery of a new type of topological Weyl fermion semimetal state in MoxW1–xTe2, Nat. Commun.7, 13643 (2016)
https://doi.org/10.1038/ncomms13643
|
291 |
G. Chang, et al., A strongly robust type II Weyl fermion semimetal state in Ta3S2, Sci. Adv.2, 6 (2016)
https://doi.org/10.1126/sciadv.1600295
|
292 |
C. Zhong, Y. Chen, Z.-M. Yu, Y. Xie, H. Wang, S. A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nat. Commun.8, 15641 (2017)
https://doi.org/10.1038/ncomms15641
|
293 |
W. Chen, H.-Z. Lu, and J.-M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B96, 041102 (2017)
https://doi.org/10.1103/PhysRevB.96.041102
|
294 |
Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B96, 041103 (2017)
https://doi.org/10.1103/PhysRevB.96.041103
|
295 |
M. Ezawa, Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon’s knot, trefoil knot, and other linked nodal varieties, Phys. Rev. B96, 041202 (2017)
https://doi.org/10.1103/PhysRevB.96.041202
|
296 |
L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao, Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires, Nat. Commun.7, 10769 (2016)
https://doi.org/10.1038/ncomms10769
|
297 |
H. Zheng, et al., Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface, Phys. Rev. Lett.117, 266804 (2016)
https://doi.org/10.1103/PhysRevLett.117.266804
|
298 |
H. Zheng and M. Z. Hasan, Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: A review, Advances in Physics: X3, 1466661 (2018)
https://doi.org/10.1080/23746149.2018.1466661
|
299 |
H. Zheng, et al., Mirror protected Dirac fermions on a Weyl semimetal NbP surface, Phys. Rev. Lett.119, 196403 (2017)
https://doi.org/10.1103/PhysRevLett.119.196403
|
300 |
G. Chang, et al., Signatures of Fermi arcs in the quasiparticle interferences of the Weyl semimetals TaAs and NbP, Phys. Rev. Lett.116, 066601 (2016)
https://doi.org/10.1103/PhysRevLett.116.066601
|
301 |
S. Wang, B.-C. Lin, W.-Z. Zheng, D. Yu, and Z.-M. Liao, Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire, Phys. Rev. Lett.120, 257701 (2018)
https://doi.org/10.1103/PhysRevLett.120.257701
|
302 |
J. Gooth, et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature547, 324 (2017)
https://doi.org/10.1038/nature23005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|