|
|
Topological insulator: Spintronics and quantum computations |
Mengyun He1,2, Huimin Sun1,2, Qing Lin He1,2( ) |
1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.
|
Keywords
topological insulator
Majorana fermion
topological spintronics
topological superconductor
|
Corresponding Author(s):
Qing Lin He
|
Issue Date: 25 April 2019
|
|
1 |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
|
2 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
3 |
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
https://doi.org/10.1103/RevModPhys.88.035005
|
4 |
P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature 460(7259), 1106 (2009)
https://doi.org/10.1038/nature08308
|
5 |
T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett. 103(26), 266803 (2009)
https://doi.org/10.1103/PhysRevLett.103.266803
|
6 |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
|
7 |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
|
8 |
J. E. Moore, The birth of topological insulators, Nature 464(7286), 194 (2010)
https://doi.org/10.1038/nature08916
|
9 |
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
|
10 |
M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
https://doi.org/10.1126/science.1148047
|
11 |
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
https://doi.org/10.1038/nature06843
|
12 |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
https://doi.org/10.1038/nphys1274
|
13 |
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
|
14 |
L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
https://doi.org/10.1103/PhysRevLett.98.106803
|
15 |
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
|
16 |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
https://doi.org/10.1103/RevModPhys.90.015001
|
17 |
D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of unconventional quantum spin textures in topological insulators, Science 323(5916), 919 (2009)
https://doi.org/10.1126/science.1167733
|
18 |
Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325(5937), 178 (2009)
https://doi.org/10.1126/science.1173034
|
19 |
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime,Nature 460(7259), 1101 (2009)
https://doi.org/10.1038/nature08234
|
20 |
A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, and D. C. Ralph, Spin-transfer torque generated by a topological insulator, Nature 511(7510), 449 (2014)
https://doi.org/10.1038/nature13534
|
21 |
Y. Fan and K. L. Wang, Spintronics based on topological insulators, Spin 06(02), 1640001 (2016)
https://doi.org/10.1142/S2010324716400014
|
22 |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
|
23 |
J. Wu, J. Liu, and X. J. Liu, Topological spin texture in a quantum anomalous Hall insulator, Phys. Rev. Lett. 113(13), 136403 (2014)
https://doi.org/10.1103/PhysRevLett.113.136403
|
24 |
L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
|
25 |
J. Wang and S. C. Zhang, Topological states of condensed matter, Nat. Mater. 16(11), 1062 (2017)
https://doi.org/10.1038/nmat5012
|
26 |
B. Lian, X. Q. Sun, A. Vaezi, X. L. Qi, and S. C. Zhang, Topological quantum computation based on chiral Majorana fermions, Proc. Natl. Acad. Sci. USA 115(43), 10938 (2018)
https://doi.org/10.1073/pnas.1810003115
|
27 |
P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Observation of inverse spin Hall effect in bismuth selenide,Phys. Rev. B 90(9), 094403 (2014)
https://doi.org/10.1103/PhysRevB.90.094403
|
28 |
H. C. Han, Y. S. Chen, M. D. Davydova, P. N. Petrov, P. N. Skirdkov, J. G. Lin, J. C. Wu, J. C. A. Huang, K. A. Zvezdin, and A. K. Zvezdin, Spin pumping and probe in permalloy dots-topological insulator bilayers, Appl. Phys. Lett. 111(18), 182411 (2017)
https://doi.org/10.1063/1.5004097
|
29 |
A. A. Baker, A. I. Figueroa, L. J. Collins-McIntyre, G. van der Laan, and T. Hesjedal, Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures, Sci. Rep. 5(1), 7907 (2015)
https://doi.org/10.1038/srep07907
|
30 |
J. C. Rojas-Sánchez, S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, N. Reyren, J. M. George, and A. Fert, Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films, Phys. Rev. Lett. 116(9), 096602 (2016)
https://doi.org/10.1103/PhysRevLett.116.096602
|
31 |
C. N. Wu, Y. H. Lin, Y. T. Fanchiang, H. Y. Hung, H. Y. Lin, P. H. Lin, J. G. Lin, S. F. Lee, M. Hong, J. Kwo, Strongly enhanced spin current in topological insulator/ferromagnetic metal heterostructures by spin pumping, J. Appl. Phys. 117(17), 17D148(2015)
https://doi.org/10.1063/1.4918631
|
32 |
Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wang, Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure, Nat. Mater. 13(7), 699 (2014)
https://doi.org/10.1038/nmat3973
|
33 |
Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan,M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L. T. Chang, M. Akyol, G. Yu, T. Nie, K. L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, and K. L. Wang, Electric-field control of spin–orbit torque in a magnetically doped topological insulator, Nat. Nanotechnol. 11(4), 352 (2016)
https://doi.org/10.1038/nnano.2015.294
|
34 |
Z. Jiang, C. Z. Chang, M. R. Masir, C. Tang, Y. Xu, J. S. Moodera, A. H. MacDonald, and J. Shi, Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states, Nat. Commun. 7(1), 11458 (2016)
https://doi.org/10.1038/ncomms11458
|
35 |
Y. Q. Huang, Y. X. Song, S. M. Wang, I. A. Buyanova, and W. M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator, Nat. Commun. 8, 15401 (2017)
https://doi.org/10.1038/ncomms15401
|
36 |
L. Liu, A. Richardella, I. Garate, Y. Zhu, N. Samarth, and C. T. Chen, Spin-polarized tunneling study of spinmomentum locking in topological insulators, Phys. Rev. B 91(23), 235437 (2015)
https://doi.org/10.1103/PhysRevB.91.235437
|
37 |
Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, Spin-electricity conversion induced by spin injection into topological insulators,Phys. Rev. Lett. 113(19), 196601 (2014)
https://doi.org/10.1103/PhysRevLett.113.196601
|
38 |
Y. Lv, J. Kally, D. Zhang, J. S. Lee, M. Jamali, N. Samarth, and J. P. Wang, Unidirectional spin-Hall and Rashba–Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures, Nat. Commun. 9(1), 111 (2018)
https://doi.org/10.1038/s41467-017-02491-3
|
39 |
K. Yasuda, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Large unidirectional magnetoresistance in a magnetic topological insulator, Phys. Rev. Lett. 117(12), 127202 (2016)
https://doi.org/10.1103/PhysRevLett.117.127202
|
40 |
Q. L. He, X. Kou, A. J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S. M. Disseler, B. J. Kirby, W. II Ratcliff, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J. A. Borchers, and K. L. Wang, Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures, Nat. Mater. 16(1), 94 (2017)
https://doi.org/10.1038/nmat4783
|
41 |
Q. L. He, G. Yin, L. Yu, A. J. Grutter, L. Pan, C. Z. Chen, X. Che, G. Yu, B. Zhang, Q. Shao, A. L. Stern, B. Casas, J. Xia, X. Han, B. J. Kirby, R. K. Lake, K. T. Law, and K. L. Wang, Topological transitions induced by antiferromagnetism in a thin-film topological insulator, Phys. Rev. Lett. 121(9), 096802 (2018)
https://doi.org/10.1103/PhysRevLett.121.096802
|
42 |
K. Yasuda, R. Wakatsuki, T. Morimoto, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Ezawa, M. Kawasaki, N. Nagaosa, and Y. Tokura, Geometric Hall effects in topological insulator heterostructures, Nat. Phys. 12(6), 555 (2016)
https://doi.org/10.1038/nphys3671
|
43 |
C. Liu, Y.Zang, W. Ruan, Y. Gong, K. He, X. Ma, Q. K. Xue, and Y. Wang, Dimensional crossover-induced topological Hall effect in a magnetic topological insulator, Phys. Rev. Lett. 119(17), 176809 (2017)
https://doi.org/10.1103/PhysRevLett.119.176809
|
44 |
Q. L. He, G. Yin, A. J. Grutter, L. Pan, X. Che, G. Yu, D. A. Gilbert, S. M. Disseler, Y. Liu, P. Shafer, B. Zhang, Y. Wu, B. J. Kirby, E. Arenholz, R. K. Lake, X. Han, and K. L. Wang, Exchange-biasing topological charges by antiferromagnetism, Nat. Commun. 9(1), 2767 (2018)
https://doi.org/10.1038/s41467-018-05166-9
|
45 |
F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
https://doi.org/10.1038/nphys1380
|
46 |
J. Nilsson, A. R. Akhmerov, and C. W. Beenakker, Splitting of a Cooper pair by a pair of Majorana bound states, Phys. Rev. Lett. 101(12), 120403 (2008)
https://doi.org/10.1103/PhysRevLett.101.120403
|
47 |
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
https://doi.org/10.1088/1361-6633/aa6ac7
|
48 |
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
|
49 |
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi 44(10S), 131 (2001)
https://doi.org/10.1070/1063-7869/44/10S/S29
|
50 |
J. C. Teo and C. L. Kane, Majorana fermions and non-Abelian statistics in three dimensions, Phys. Rev. Lett. 104(4), 046401 (2010)
https://doi.org/10.1103/PhysRevLett.104.046401
|
51 |
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
https://doi.org/10.1103/PhysRevLett.114.017001
|
52 |
H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L.Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003 (2016)
https://doi.org/10.1103/PhysRevLett.116.257003
|
53 |
F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji, G. Liu, J. Fan, C. Yang, T. Xiang, and L. Lu, Proximity effect at superconducting Sn-Bi2Se3 interface, Phys. Rev. B 85, 104508 (2012)
https://doi.org/10.1103/PhysRevB.85.104508
|
54 |
G. Koren, T. Kirzhner, Y. Kalcheim, and O. Millo, Signature of proximity-induced px+ipy triplet pairing in the doped topological insulator Bi2Se3 by the s-wave superconductor NbN, Europhys. Lett. (EPL) 103(6), 67010 (2013)
https://doi.org/10.1209/0295-5075/103/67010
|
55 |
J. Wang, C. Z. Chang, H. Li, K. He, D. Zhang, M. Singh, X.C. Ma, N. Samarth, M. Xie, Q.K. Xue, and M. H. W. Chan,Interplay between topological insulators and superconductors, Phys. Rev. B 85, 045415 (2012)
https://doi.org/10.1103/PhysRevB.85.045415
|
56 |
S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Topological Superconductivity in CuxBi2Se3, Phys. Rev. Lett. 107(21), 217001 (2011)
https://doi.org/10.1103/PhysRevLett.107.217001
|
57 |
S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Odd-parity pairing and topological superconductivity in a strongly spin–orbit coupled semiconductor, Phys. Rev. Lett. 109(21), 217004 (2012)
https://doi.org/10.1103/PhysRevLett.109.217004
|
58 |
Q. L. He, H. Liu, M. He, Y. H. Lai, H. He, G. Wang, K. T. Law, R. Lortz, J. Wang, and I. K. Sou, Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure, Nat. Commun. 5(1), 4247 (2014)
https://doi.org/10.1038/ncomms5247
|
59 |
P. Zareapour, A. Hayat, S. Y. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, S. W. Cheong, Z. Xu, A. Yang, G. D. Gu, S. Jia, R. J. Cava, and K. S. Burch, Proximityinduced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3, Nat. Commun. 3(1), 1056 (2012)
https://doi.org/10.1038/ncomms2042
|
60 |
M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Josephson supercurrent through a topological insulator surface state, Nat. Mater. 11(5), 417 (2012)
https://doi.org/10.1038/nmat3255
|
61 |
F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu, Strong superconducting proximity effect in Pb-Bi2Te3 hybrid structures, Sci. Rep. 2(1), 339 (2012)
https://doi.org/10.1038/srep00339
|
62 |
J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Unconventional Josephson effect in hybrid superconductor–topological insulator devices, Phys. Rev. Lett. 109(5), 056803 (2012)
https://doi.org/10.1103/PhysRevLett.109.056803
|
63 |
S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10, 638 (2014)
https://doi.org/10.1038/nphys3036
|
64 |
E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M. Klapwijk, C. Brune, K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Gapless Andreev bound states in the quantum spin Hall insulator HgTe, Nat. Nanotechnol. 12(2), 137 (2016)
https://doi.org/10.1038/nnano.2016.159
|
65 |
M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science 336(6077), 52 (2012)
https://doi.org/10.1126/science.1216466
|
66 |
S. Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S. H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth, and M. Z. Hasan, Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor, Nat. Phys. 10(12), 943 (2014)
https://doi.org/10.1038/nphys3139
|
67 |
E. Wang, H. Ding, A. V. Fedorov, W. Yao, Z. Li, Y. F. Lv, K. Zhao, L. G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S. H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q. K. Xue, X. Chen, and S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a dwave high-temperature superconductor, Nat. Phys. 9(10), 621 (2013)
https://doi.org/10.1038/nphys2744
|
68 |
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017)
https://doi.org/10.1126/science.aag2792
|
69 |
C. F. Pai, Switching by topological insulators,Nat. Mater. 17(9), 755 (2018)
https://doi.org/10.1038/s41563-018-0146-x
|
70 |
J. Han, A. Richardella, S. A. Siddiqui, J. Finley, N. Samarth, and L. Liu, Room-temperature spin–orbit torque switching induced by a topological insulator, Phys. Rev. Lett. 119(7), 077702 (2017)
https://doi.org/10.1103/PhysRevLett.119.077702
|
71 |
Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K. L. Teo, Y. Wu, and H. Yang, Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin–orbit torques, Nat. Commun. 8(1), 1364 (2017)
https://doi.org/10.1038/s41467-017-01583-4
|
72 |
M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J. P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1-x films, Nat. Mater. 17(9), 800 (2018)
https://doi.org/10.1038/s41563-018-0136-z
|
73 |
N. H. D. Khang, Y. Ueda, and P. N. Hai, A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching, Nat. Mater. 17(9), 808 (2018)
https://doi.org/10.1038/s41563-018-0137-y
|
74 |
D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett. 86(2), 268 (2001)
https://doi.org/10.1103/PhysRevLett.86.268
|
75 |
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
https://doi.org/10.1038/nphys1915
|
76 |
D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6 , 031016 (2016)
https://doi.org/10.1103/PhysRevX.6.031016
|
77 |
T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes, Phys. Rev. B 95(23), 235305 (2017)
https://doi.org/10.1103/PhysRevB.95.235305
|
78 |
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
https://doi.org/10.1088/0034-4885/75/7/076501
|
79 |
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
https://doi.org/10.1016/S0003-4916(02)00018-0
|
80 |
S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10(9), 638 (2014)
https://doi.org/10.1038/nphys3036
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|