Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (5) : 53603    https://doi.org/10.1007/s11467-019-0899-y
RESEARCH ARTICLE
High-order exceptional points in non-Hermitian Moiré lattices
Yan-Rong Zhang1, Ze-Zheng Zhang1, Jia-Qi Yuan1, Ming Kang2(), Jing Chen1,3()
1. MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
2. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 Download: PDF(2675 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study proposes an approach to generate high-order exceptional points (EPs) in non-Hermitian systems. A system comprising a homogenous waveguide is considered wherein the imaginary part of the refractive index is modulated using a one-dimensional Moiré profile. This gain-loss modulation couples different lossless waveguide modes, and these hybrid modes can be modeled using a non-Hermitian matrix with complex off-diagonal elements. Results indicate that third-order EPs can be produced by the coalescence of two second-order EPs. Then, the necessary requirements are analyzed using coupled-wave equations and the physical effects of the singularities are discussed.

Keywords exceptional points      non-Hermitian quantum physics      quantum optics      phase transitions     
Corresponding Author(s): Ming Kang,Jing Chen   
Issue Date: 13 May 2019
 Cite this article:   
Yan-Rong Zhang,Ze-Zheng Zhang,Jia-Qi Yuan, et al. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0899-y
https://academic.hep.com.cn/fop/EN/Y2019/V14/I5/53603
1 T. Kato, Perturbation Theory of Linear Operators, Berlin: Springer-Verlag Berlin Heidelberg, 1966
https://doi.org/10.1007/978-3-662-12678-3
2 W. D. Heiss and H. L. Harney, The chirality of exceptional points, Eur. Phys. J. D 17(2), 149 (2001)
https://doi.org/10.1007/s100530170017
3 C. Dembowski, B. Dietz, H. D. Graf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, Observation of a chiral state in a microwave cavity, Phys. Rev. Lett. 90(3), 034101 (2003)
https://doi.org/10.1103/PhysRevLett.90.034101
4 J. Wiersig, Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities, Phys. Rev. Lett. 97(25), 253901 (2006)
https://doi.org/10.1103/PhysRevLett.97.253901
5 B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schafer, and C. A. Stafford, Rabi oscillations at exceptional points in microwave billiards, Phys. Rev. E 75(2), 027201 (2007)
https://doi.org/10.1103/PhysRevE.75.027201
6 S. B. Lee, J. Yang, S. Moon, S. Y. Lee, J. B. Shim, S. W. Kim, J. H. Lee, and K. An, Observation of an exceptional point in a chaotic optical microcavity, Phys. Rev. Lett. 103(13), 134101 (2009)
https://doi.org/10.1103/PhysRevLett.103.134101
7 Q. H. Song and H. Cao, Improving optical confinement in nanostructures via external mode coupling, Phys. Rev. Lett. 105(5), 053902 (2010)
https://doi.org/10.1103/PhysRevLett.105.053902
8 S. Bittner, B. Dietz, U. Gunther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schafer, PTsymmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
https://doi.org/10.1103/PhysRevLett.108.024101
9 M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)
https://doi.org/10.1103/PhysRevLett.108.173901
10 X. Yin and X. Zhang, Unidirectional light propagation at exceptional points, Nat. Mater. 12(3), 175 (2013)
https://doi.org/10.1038/nmat3576
11 M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schoberl, H. E. Tureci, G. Strasser, K. Unterrainer, and S. Rotter, Reversing the pump dependence of a laser at an exceptional point, Nat. Commun. 5(1), 4034 (2014)
https://doi.org/10.1038/ncomms5034
12 M. Kang, H. X. Cui, T. F. Li, J. Chen, W. Zhu, and M. Premaratne, Unidirectional phase singularity in ultrathin metamaterials at exceptional points, Phys. Rev. A 89(6), 065801 (2014)
https://doi.org/10.1103/PhysRevA.89.065801
13 S. Longhi and G. Della Valle, Optical lattices with exceptional points in the continuum, Phys. Rev. A 89(5), 052132 (2014)
https://doi.org/10.1103/PhysRevA.89.052132
14 H. Cao and J. Wiersig, Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics, Rev. Mod. Phys. 87(1), 61 (2015)
https://doi.org/10.1103/RevModPhys.87.61
15 H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time-symmetric coupled microring lasers operating around an exceptional point, Opt. Lett. 40(21), 4955 (2015)
https://doi.org/10.1364/OL.40.004955
16 B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. Chua, J. D. Joannopoulos, and M. Soljacic, Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)
https://doi.org/10.1038/nature14889
17 A. Cerjan, A. Raman, and S. Fan, Exceptional contours and band structure design in parity–time symmetric photonic crystals, Phys. Rev. Lett. 116(20), 203902 (2016)
https://doi.org/10.1103/PhysRevLett.116.203902
18 J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
https://doi.org/10.1038/nature18605
19 L. Ge, Anomalous parity–time-symmetry transition away from an exceptional point, Phys. Rev. A 94(1), 013837 (2016)
https://doi.org/10.1103/PhysRevA.94.013837
20 M. Kang, J. Chen, and Y. D. Chong, Chiral exceptional points in metasurfaces, Phys. Rev. A 94(3), 033834 (2016)
https://doi.org/10.1103/PhysRevA.94.033834
21 K. H. Kim, M. S. Hwang, H. R. Kim, J. H. Choi, Y. S. No, and H. G. Park, Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains, Nat. Commun. 7(1), 13893 (2016)
https://doi.org/10.1038/ncomms13893
22 M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, Manifestation of PTsymmetry breaking in polarization space with terahertz metasurfaces, Phys. Rev. Lett. 113(9), 093901 (2014)
https://doi.org/10.1103/PhysRevLett.113.093901
23 A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
https://doi.org/10.1103/PhysRevLett.103.093902
24 S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010) (R)
https://doi.org/10.1103/PhysRevA.82.031801
25 L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)
https://doi.org/10.1038/nmat3495
26 W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT-symmetric systems, Phys. Rev. Lett. 119(7), 077401 (2017)
https://doi.org/10.1103/PhysRevLett.119.077401
27 T. Goldzak, A. A. Mailybaev, and N. Moiseyev, Light stops at exceptional points, Phys. Rev. Lett. 120(1), 013901 (2018)
https://doi.org/10.1103/PhysRevLett.120.013901
28 H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points, Nature 548(7666), 187 (2017)
https://doi.org/10.1038/nature23280
29 W. D. Heiss, Chirality of wavefunctions for three coalescing levels, J. Phys. A 41(24), 244010 (2008)
https://doi.org/10.1088/1751-8113/41/24/244010
30 K. Ding, Z. Q. Zhang, and C. T. Chan, Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals, Phys. Rev. B 92(23), 235310 (2015)
https://doi.org/10.1103/PhysRevB.92.235310
31 W. D. Heiss and G. Wunner, Resonance scattering at third-order exceptional points, J. Phys. A 48(34), 345203 (2015)
https://doi.org/10.1088/1751-8113/48/34/345203
32 Z. Lin, A. Pick, M. Loncar, and A. W. Rodriguez, Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals, Phys. Rev. Lett. 117(10), 107402 (2016)
https://doi.org/10.1103/PhysRevLett.117.107402
33 H. Jing, K. Ozdemir, H. Lu, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep. 7(1), 3386 (2017)
https://doi.org/10.1038/s41598-017-03546-7
34 M. Y. Nada, M. A. K. Othman, and F. Capolino, Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy, Phys. Rev. B 96(18), 184304 (2017)
https://doi.org/10.1103/PhysRevB.96.184304
35 J. Schnabel, H. Cartarius, J. Main, G. Wunner, and W. D. Heiss, PT-symmetric waveguide system with evidence of a third-order exceptional point, Phys. Rev. A 95(5), 053868 (2017)
https://doi.org/10.1103/PhysRevA.95.053868
36 J. Kullig, C. H. Yi, M. Hentschel, and J. Wiersig, Exceptional points of third-order in a layered optical microdisk cavity, New J. Phys. 20(8), 083016 (2018)
https://doi.org/10.1088/1367-2630/aad594
37 Q. Zhong, D. N. Christodoulides, M. Khajavikhan, K. G. Makris, and R. El-Ganainy, Power-law scaling of extreme dynamics near higher-order exceptional points, Phys. Rev. A 97(2), 020105 (2018) (R)
https://doi.org/10.1103/PhysRevA.97.020105
38 X. Zhou, S. K. Gupta, Z. Huang, Z. Yan, P. Zhan, Z. Chen, M. Lu, and Z. Wang, Optical lattices with higher-order exceptional points by non-Hermitian coupling, Appl. Phys. Lett. 113(10), 101108 (2018)
https://doi.org/10.1063/1.5043279
39 K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam dynamics in PT symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)
https://doi.org/10.1103/PhysRevLett.100.103904
40 J. B. Khurgin, Light slowing down in Moiré fiber gratings and its implications for nonlinear optics, Phys. Rev. A 62(1), 013821 (2000)
https://doi.org/10.1103/PhysRevA.62.013821
41 R. D. Xue, W. Wang, L. Q. Wang, H. L. Chen, R. P. Guo, and J. Chen, Localization and oscillation of optical beams in Moiré lattices,Opt. Express 25(5), 5788 (2017)
https://doi.org/10.1364/OE.25.005788
42 L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity–time symmetry, Nat. Photonics 11(12), 752 (2017)
https://doi.org/10.1038/s41566-017-0031-1
43 R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non- Hermitian physics and PTsymmetry, Nat. Phys. 14(1), 11 (2018)
https://doi.org/10.1038/nphys4323
44 I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A 42(15), 153001 (2009)
https://doi.org/10.1088/1751-8113/42/15/153001
45 W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, Photonic band structures of a two-dimensional ionic dielectric medium, Phys. Rev. B 54(15), 10280 (1996)
https://doi.org/10.1103/PhysRevB.54.10280
[1] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[2] Yang-Yang Fu, Yue Fei, Da-Xing Dong, You-Wen Liu. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601-.
[3] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[4] J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities[J]. Front. Phys. , 2018, 13(1): 130305-.
[5] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[6] Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402-.
[7] Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang. Single photon sources with single semiconductor quantum dots[J]. Front. Phys. , 2014, 9(2): 170-193.
[8] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[9] WU Min, LIAO Chang-jun, LIU Song-hao. Two Methods for Extending Quantum Key Warehouse[J]. Front. Phys. , 2006, 1(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed