Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (5) : 53605    https://doi.org/10.1007/s11467-019-0926-z
COMMENTARY
Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”
Y. Finkelstein1(), R. Moreh2
1. Nuclear Research Center-Negev, Beer-Sheva 84190, Israel
2. Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
 Download: PDF(661 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We comment on the findings of “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”, by V. De Michele, G. Romanelli, and A. Cupane [Front. Phys. 13, 138205 (2018)]. We show that the current sensitivity of the deep inelastic neutron scattering (DINS) method, cannot detect with confidence small differences in the proton kinetic energy, Ke(H), involved in a liquid-liquid transition in supercooled water confined in nanoporous silica. We also critisize the calculation of Ke(H) carried out in Front. Phys. 13, 138205 (2018).

Keywords supercooled water      liquid–liquid transition      deep inelastic neutron scattering      libration      vibrational density of states      proton kinetic energy     
Corresponding Author(s): Y. Finkelstein   
Issue Date: 16 October 2019
 Cite this article:   
Y. Finkelstein,R. Moreh. Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”[J]. Front. Phys. , 2019, 14(5): 53605.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0926-z
https://academic.hep.com.cn/fop/EN/Y2019/V14/I5/53605
1 V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
https://doi.org/10.1007/s11467-017-0699-1
2 C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: Beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
https://doi.org/10.1080/00018732.2017.1317963
3 C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
https://doi.org/10.1021/acs.jpclett.6b00926
4 R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
https://doi.org/10.1016/j.chemphys.2013.09.010
5 V. De Michele, G. Romanelli, and A. Cupane, Kinetic energy and radial momentum distribution of hydrogen and oxygen atoms of water confined in silica hydrogel in the temperature interval 170–325 K, Sci. China Phys. Mech. & Astron. 62, 107012 (2019)
https://doi.org/10.1007/s11433-019-9420-1
6 Y. Finkelstein and R. Moreh, Applying semi-empirical quantum harmonic calculations for studying the atomic kinetic energies in hydrogen bonded systems, Curr. Phys. Chem. 7(1), 3 (2017)
https://doi.org/10.2174/1877946807666170117121857
7 Y. Finkelstein and R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58 (2014)
https://doi.org/10.1016/j.chemphys.2014.01.004
8 A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
https://doi.org/10.1063/1.4895793
9 Y. Finkelstein and R. Moreh, On H-dynamics of supercooled water confined in nanoporous silica, Chem. Phys. 523, 83 (2019)
https://doi.org/10.1016/j.chemphys.2019.04.015
10 A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93(3), 035503 (2004)
https://doi.org/10.1103/PhysRevLett.93.035503
11 F. Lehmkühler, Y. Forov, T. Büning, C. J. Sahle, I. Steinke, K. Julius, T. Buslaps, M. Tolan, M. Hakala, and C. Sternemann, Intramolecular structure and energetics in supercooled water down to 255 K, Phys. Chem. Chem. Phys. 18(9), 6925 (2016)
https://doi.org/10.1039/C5CP07721D
[1] V. De Michele, G. Romanelli, A. Cupane. Reply to “Comment to ‘Dynamics of supercooled confined water measured by deep inelastic neutron scattering’ by Y. Finkelstein and R. Moreh”[J]. Front. Phys. , 2019, 14(5): 53606-.
[2] Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study[J]. Front. Phys. , 2018, 13(1): 136103-.
[3] Vincenzo De Michele, Giovanni Romanelli, Antonio Cupane. Dynamics of supercooled confined water measured by deep inelastic neutron scattering[J]. Front. Phys. , 2018, 13(1): 138205-.
[4] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
[5] Francesco Mallamace,Carmelo Corsaro,Domenico Mallamace,Zhe Wang,Sow-Hsin Chen. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis[J]. Front. Phys. , 2015, 10(5): 106103-.
[6] Feng-Zhong Dong, Xing-Long Chen, Qi Wang, Lan-Xiang Sun, Hai-Bin Yu, Yun-Xian Liang, Jing-Ge Wang, Zhi-Bo Ni, Zhen-Hui Du, Yi-Wen Ma, Ji-Dong Lu. Recent progress on the application of LIBS for metallurgical online analysis in China[J]. Front. Phys. , 2012, 7(6): 679-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed