Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 62601    https://doi.org/10.1007/s11467-019-0938-8
RESEARCH ARTICLE
Photonic spin Hall effect in PT symmetric metamaterials
Yang-Yang Fu(), Yue Fei, Da-Xing Dong, You-Wen Liu()
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
 Download: PDF(1395 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed and demonstrated that PT symmetric metamaterials could be used to achieve enhanced spin Hall effect (SHE) of light. We find that when laser mode is excited in PT symmetric system, the enhanced SHE could be obtained in both transmitted and reflected beams. In addition, as exceptional points (EPs) of PT symmetric system can happen for both p- and s-polarizations, the enhanced SHE of reflected light can function for both horizontally and vertically polarized incident beams. Particularly, these EPs can lead to unidirectional reflectionlessness, asymmetric SHE with maximum contrast ratio of 48 is obtained by launching light beams near EPs. Our work opens up a new path to obtain enhanced transverse displacement for both reflected and transmitted light and enables more opportunities in manipulating photonic SHE.

Keywords PT symmetry      exceptional points      laser mode      spin Hall effect     
Corresponding Author(s): Yang-Yang Fu,You-Wen Liu   
Issue Date: 22 November 2019
 Cite this article:   
Yang-Yang Fu,Yue Fei,Da-Xing Dong, et al. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0938-8
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/62601
1 M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)
https://doi.org/10.1103/PhysRevLett.93.083901
2 O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)
https://doi.org/10.1126/science.1152697
3 Y. Qin, Y. Li, H. Y. He, and Q. H. Gong, Measurement of spin Hall effect of reflected light, Opt. Lett. 34(17), 2551 (2009)
https://doi.org/10.1364/OL.34.002551
4 X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, Observation of spin Hall effect in photon tunneling via weak measurements, Sci. Rep. 4(1), 7388 (2015)
https://doi.org/10.1038/srep07388
5 O. Takayama and G. Puentes, Enhanced spin Hall effect of light by transmission in a polymer, Opt. Lett. 43(6), 1343 (2018)
https://doi.org/10.1364/OL.43.001343
6 K. Y. Bliokh and A. Aiello, Goos–Hänchen and Imbert– Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)
https://doi.org/10.1088/2040-8978/15/1/014001
7 H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection, Phys. Rev. A 84(4), 043806 (2011)
https://doi.org/10.1103/PhysRevA.84.043806
8 L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle, Appl. Phys. Lett. 100(7), 071109 (2012)
https://doi.org/10.1063/1.3687186
9 M. Pan, Y. Li, J. Ren, B. Wang, Y. Xiao, H. Yang, and Q. Gong, Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster’s angle, Appl. Phys. Lett. 103(7), 071106 (2013)
https://doi.org/10.1063/1.4818816
10 Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)
https://doi.org/10.1038/natrevmats.2016.67
11 T. Tang, C. Li, and L. Luo, Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide, Sci. Rep. 6(1), 30762 (2016)
https://doi.org/10.1038/srep30762
12 O. Takayama, J. Sukham, R. Malureanu, A. V. Lavrinenko, and G. Puentes, Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths, Opt. Lett. 43(19), 4602 (2018)
https://doi.org/10.1364/OL.43.004602
13 H. Wang and X. Zhang, Unusual spin Hall effect of a light beam in chiral metamaterials, Phys. Rev. A 83(5), 053820 (2011)
https://doi.org/10.1103/PhysRevA.83.053820
14 X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
https://doi.org/10.1126/science.1231758
15 Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)
https://doi.org/10.1063/1.4878400
16 Y. Fu, Y. Xu, and H. Chen, Additional modes in a waveguide system of zero-index-metamaterials with defects, Sci. Rep. 4(1), 6428 (2015)
https://doi.org/10.1038/srep06428
17 Y. Fu, Y. Xu, and H. Chen, Inhomogeneous field in cavities of zero index metamaterials, Sci. Rep. 5(1), 11217 (2015)
https://doi.org/10.1038/srep11217
18 W. Zhu and W. She, Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab, Opt. Lett. 40(13), 2961 (2015)
https://doi.org/10.1364/OL.40.002961
19 T. Tang, J. Li, L. Luo, P. Sun, and Y. Zhang, Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon-and mu-near-zero metamaterial slab, Opt. Express 25(3), 2347 (2017)
https://doi.org/10.1364/OE.25.002347
20 T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial, Opt. Express 24(24), 28113 (2016)
https://doi.org/10.1364/OE.24.028113
21 W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, Large spatial and angular spin splitting in a thin anisotropic e-near-zero metamaterial, Opt. Express 25(5), 5196 (2017)
https://doi.org/10.1364/OE.25.005196
22 L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity–time symmetry, Nat. Photonics 11(12), 752 (2017)
https://doi.org/10.1038/s41566-017-0031-1
23 Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)
https://doi.org/10.1103/PhysRevLett.106.213901
24 L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)
https://doi.org/10.1038/nmat3495
25 S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
https://doi.org/10.1103/PhysRevA.82.031801
26 Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
https://doi.org/10.1103/PhysRevLett.106.093902
27 M. Tang, X. Zhou, H. Luo, and S. Wen, Spin Hall effect of a light beam in anisotropic metamaterials, Chin. Phys. B 21(12), 124201 (2012)
https://doi.org/10.1088/1674-1056/21/12/124201
28 Y. Cao, Y. Fu, Q. Zhou, Y. Xu, L. Gao, and H. Chen, Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures, Opt. Express 27(6), 7857 (2019)
https://doi.org/10.1364/OE.27.007857
29 Y. Fu, Y. Xu, and H. Chen, Zero index metamaterials with PT symmetry in a waveguide system, Opt. Express 24(2), 1648 (2016)
https://doi.org/10.1364/OE.24.001648
30 Y. Fu, X. Zhang, Y. Xu, and H. Chen, Design of zero index metamaterials with PT symmetry using epsilon-nearzero media with defects, J. Appl. Phys. 121(9), 094503 (2017)
https://doi.org/10.1063/1.4977692
31 X. Zhou and X. Ling, Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting, Opt. Express 24(3), 3025 (2016)
https://doi.org/10.1364/OE.24.003025
32 X. Zhou, X. Lin, Z. Xiao, T. Low, A. Alù,B. Zhang, and H. Sun, Controlling photonic spin Hall effect via exceptional points, Phys. Rev. B 100(1), 013813 (2019)
https://doi.org/10.1103/PhysRevB.100.115429
33 R. Bai, C. Zhang, X. Gu, X. Jin, Y. Zhao, and Y. Lee, Switching the unidirectional reflectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling, Sci. Rep. 7(1), 10742 (2017)
https://doi.org/10.1038/s41598-017-11376-w
34 Z. Wong, Y. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, and X. Zhang, Lasing and anti-lasing in a single cavity, Nat. Photonics 10(12), 796 (2016)
https://doi.org/10.1038/nphoton.2016.216
35 L. Ge and L. Feng, Contrasting eigenvalue and singularvalue spectra for lasing and antilasing in a PT-symmetric periodic structure, Phys. Rev. A 95(1), 013813 (2017)
https://doi.org/10.1103/PhysRevA.95.013813
36 Y. Xu, Y. Fu, and H. Chen, Electromagnetic wave propagations in conjugate metamaterials,Opt. Express 25(5), 4952(2017)
https://doi.org/10.1364/OE.25.004952
37 Y. Fu, Y. Cao, S. A. Cummer, Y. Xu, and H. Chen, Coherent perfect absorber and laser modes in purely imaginary metamaterials, Phys. Rev. A 96(4), 043838 (2017)
https://doi.org/10.1103/PhysRevA.96.043838
38 P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss, Phys. Rev. A 94(6), 063841 (2016)
https://doi.org/10.1103/PhysRevA.94.063841
39 Y. Fu, Y. Xu, and H. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)
https://doi.org/10.1007/s11467-018-0781-3
40 Y. Fu, Y. Xu, H. Chen, and S. A. Cummer, Coherent perfect absorption and laser modes in a cylindrical structure of conjugate metamaterials, New J. Phys. 20, 013015 (2018)
https://doi.org/10.1088/1367-2630/aa9cbd
[1] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[2] Cong Xiao. Semiclassical Boltzmann theory of spin Hall effects in giant Rashba systems[J]. Front. Phys. , 2018, 13(2): 137202-.
[3] Xing-Hai Zhao, Guang-Cun Shan, Chan-Hung Shek. Steady-state property and dynamics in graphene-nanoribbon-array lasers[J]. Front. Phys. , 2012, 7(5): 527-532.
[4] Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front. Phys. , 2012, 7(2): 200-207.
[5] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed