|
|
Recovering information in probabilistic quantum teleportation |
Luis Roa1, Andrea Espinoza2, Ariana Muñoz1,3, María L. Ladrón de Guevara2( ) |
1. Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile 2. Departamento de Física, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile 3. Facultad de Ingeniería, Universidad Autónoma de Chile, 5 Poniente 1670, Talca, Chile |
|
|
Abstract In this paper we redesign the probabilistic teleportation scheme considered in Phys. Rev. A 61, 034301 (2000) by Wan-Li Li et al., where the optimal state extraction protocolcomplements the basic teleportation process with a partially entangled pure state channel, in order to transfer the unknown state with fidelity 1. Unlike that scheme, where the information of the unknown state is lost if the state extraction fails, our proposal teleports exactly and optimally an unknown state, and allows to recover faithfully that state when the process has not succeeded. In order to study the resilience of the scheme, we apply it to the teleportation problem through a quantum channel in a mixed state with pure dephasing. We find that a successful process transfers an unfaithful state, namely, the outcome state acquires the decoherence of the channel, but the unknown state is recovered by the sender with fidelity 1 if the teleportation fails. In addition, in this case, the fidelity of the teleported state has quantum features only if the channel has an amount of entanglement different from zero.
|
Keywords
quantum information
teleportation
|
Corresponding Author(s):
María L. Ladrón de Guevara
|
Issue Date: 22 November 2019
|
|
1 |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
2 |
D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
|
3 |
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
https://doi.org/10.1103/PhysRevLett.80.1121
|
4 |
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
|
5 |
N. Gisin, Quantum-teleportation experiments turn 20, Nature 552(7683), 42 (2017)
https://doi.org/10.1038/d41586-017-07689-5
|
6 |
R. Lo Franco and G. Compagno, Indistinguishability of elementary systems as a resource for quantum information processing, Phys. Rev. Lett. 120(24), 240403 (2018)
https://doi.org/10.1103/PhysRevLett.120.240403
|
7 |
J. G. Ren, P. Xu, H. L. Yong, L. Zhang, Sh. K. Liao, et al., Ground-to-satellite quantum teleportation, Nature 549(7670), 70 (2017)
https://doi.org/10.1038/nature23675
|
8 |
H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, Deterministic quantum teleportation between distant atomic objects, Nat. Phys. 9(7), 400 (2013)
https://doi.org/10.1038/nphys2631
|
9 |
Sh. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Nature 500(7462), 315 (2013)
https://doi.org/10.1038/nature12366
|
10 |
K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Deterministic teleportation of a quantum gate between two logical qubits, Nature 561, 368 (2018)
https://doi.org/10.1038/s41586-018-0470-y
|
11 |
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state,Front. Phys. 13, 130320 (2018)
https://doi.org/10.1007/s11467-018-0832-9
|
12 |
G. Brassard, S. L. Braunstein, and R. Cleve, Teleportation as a quantum computation,Physica D 120(1–2), 43 (1998)
https://doi.org/10.1016/S0167-2789(98)00043-8
|
13 |
D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
https://doi.org/10.1038/46503
|
14 |
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
https://doi.org/10.1038/nphoton.2015.154
|
15 |
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9, 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
|
16 |
X. Q. Gao, Z. C. Zhang, and B. Sheng, Multi-hop teleportation in a quantum network based on mesh topology, Front. Phys. 13, 130314 (2018)
https://doi.org/10.1007/s11467-018-0766-2
|
17 |
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
https://doi.org/10.1103/PhysRevLett.76.722
|
18 |
M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
https://doi.org/10.1103/PhysRevA.60.1888
|
19 |
L. Roa, R. Gómez, A. Muñoz, G. Rai, and M. Hecker, Entanglement thresholds for displaying the quantum nature of teleportation, Ann. Phys. 371, 228 (2016)
https://doi.org/10.1016/j.aop.2016.05.004
|
20 |
L. Roa, M. L. Ladrón de Guevara, M. Soto-Moscoso, and P. Catalan, The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation, J. Phys. A: Math. Theor. 51(21), 215301 (2018)
https://doi.org/10.1088/1751-8121/aabbb2
|
21 |
T. Mor and P. Horodecki, Teleportation via generalized measurements, and conclusive teleportation, arXiv: quant-ph/9906039 (1999)
|
22 |
S. Bandyopadhyay, Teleportation and secret sharing with pure entangled states, Phys. Rev. A 62(1), 012308 (2000)
https://doi.org/10.1103/PhysRevA.62.012308
|
23 |
W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61, 034301 (2000)
https://doi.org/10.1103/PhysRevA.61.034301
|
24 |
P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A 305(1–2), 12 (2002)
https://doi.org/10.1016/S0375-9601(02)01383-X
|
25 |
L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)
https://doi.org/10.1103/PhysRevA.68.022310
|
26 |
L. Roa and C. Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A 91(1), 012344 (2015)
https://doi.org/10.1103/PhysRevA.91.012344
|
27 |
L. Roa, A. Muñoz, A. Hutin, and M. Hecker, Threefold entanglement matching, Quantum Inform. Process. 14(11), 4113 (2015)
https://doi.org/10.1007/s11128-015-1118-6
|
28 |
T. Rashvand, Teleporting an unknown quantum state with unit fidelity and unit probability via a nonmaximally entangled channel and an auxiliary system, Quantum Inform. Process. 15(11), 4839 (2016)
https://doi.org/10.1007/s11128-016-1402-0
|
29 |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11, 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
|
30 |
L. Y. Hsu, Optimal information extraction in probabilistic teleportation, Phys. Rev. A 66(1), 012308 (2002)
https://doi.org/10.1103/PhysRevA.66.012308
|
31 |
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
https://doi.org/10.1007/s11467-017-0684-8
|
32 |
J. L. Skinner and D. Hsu, Pure dephasing of a two-level system, J. Phys. Chem. 90(21), 4931 (1986)
https://doi.org/10.1021/j100412a013
|
33 |
F. K. Wilhelm, Quantum oscillations in the spin-boson model, reduced visibility from non-Markovian effects and initial entanglement, New J. Phys. 10(11), 115011 (2008)
https://doi.org/10.1088/1367-2630/10/11/115011
|
34 |
B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco, and E. Paladino, Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise, Phys. Rev. A 81(6), 062309 (2010)
https://doi.org/10.1103/PhysRevA.81.062309
|
35 |
L. Mazzola, B. Bellomo, R. Lo Franco, and G. Compagno, Connection among entanglement, mixedness, and nonlocality in a dynamical context, Phys. Rev. A 81(5), 052116 (2010)
https://doi.org/10.1103/PhysRevA.81.052116
|
36 |
B. Aaronson, R. Lo Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence, Phys. Rev. A 88(1), 012120 (2013)
https://doi.org/10.1103/PhysRevA.88.012120
|
37 |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
https://doi.org/10.1103/PhysRevLett.80.2245
|
38 |
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)
https://doi.org/10.1103/PhysRevLett.78.5022
|
39 |
A. Uhlmann, The “transition probability” in the state space of a *-algebra, Rep. Math. Phys. 9(2), 273 (1976)
https://doi.org/10.1016/0034-4877(76)90060-4
|
40 |
R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41(12), 2315 (1994)
https://doi.org/10.1080/09500349414552171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|