Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (1) : 13603    https://doi.org/10.1007/s11467-019-0943-y
RESEARCH ARTICLE
Equivariant PT-symmetric real Chern insulators
Y. X. Zhao1,2()
1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
 Download: PDF(737 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It was understood that Chern insulators cannot be realized in the presence of PT symmetry. In this paper, we reveal a new class of PT-symmetric Chern insulators, which has internal degrees of freedom forming real representations of a symmetry group with a complex endomorphism field. As a generalization to the conventional 2n-dimensional Chern insulators with integer n≥1, these PT-symmetric Chern insulators have the n-th complex Chern number as their topological invariant, and have a Zclassification given by the equivariant orthogonal K theory. Thus, in a fairly different sense, there exist ubiquitously Chern insulators with PT symmetry. By generalizing the Thouless charge pump argument, we find that, for a PT-symmetric Chern insulator with Chern number υ, there are equally many υ flavors of coexisting left- and right-handed chiral modes. Chiral modes with opposite chirality are complex conjugates to each other as complex representations of the internal symmetry group, but are not isomorphic. For the physical dimensionality d = 2, the PT-symmetric Chern insulators may be realized in artificial systems including photonic crystals and periodic mechanical systems.

Keywords topological insulator      Chern insulator     
Corresponding Author(s): Y. X. Zhao   
Issue Date: 12 December 2019
 Cite this article:   
Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0943-y
https://academic.hep.com.cn/fop/EN/Y2020/V15/I1/13603
1 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
2 R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23(10), 5632 (1981)
https://doi.org/10.1103/PhysRevB.23.5632
3 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
4 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
5 G. E. Volovik, Universe in a Helium Droplet, Oxford University Press, Oxford UK, 2003
6 R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
7 C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
8 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
9 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
10 Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PTand CPinvariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
https://doi.org/10.1103/PhysRevLett.116.156402
11 Y. X. Zhao and Y. Lu, PT-symmetric real Dirac fermions and semimetals, Phys. Rev. Lett. 118(5), 056401 (2017)
https://doi.org/10.1103/PhysRevLett.118.056401
12 C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin–orbital coupling, Phys. Rev. B. 92(8), 081201 (2015)
https://doi.org/10.1103/PhysRevB.92.081201
13 R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
https://doi.org/10.1103/PhysRevLett.115.036807
14 Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
https://doi.org/10.1103/PhysRevLett.115.036806
15 D. W. Zhang, Y. X. Zhao, R. B. Liu, Z. Y. Xue, S. L. Zhu, and Z. D. Wang, Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice, Phys. Rev. A 93(4), 043617 (2016)
https://doi.org/10.1103/PhysRevA.93.043617
16 W. B. Rui, Y. X. Zhao, and A. P. Schnyder, Topological transport in Dirac nodal-line semimetals, Phys. Rev. B 97, 161113 (2018)
https://doi.org/10.1103/PhysRevB.97.161113
17 L. Lu, J. D. Joannopoulos, and M. Soljačići, Topological photonics, Nat. Photon. 8, 821 (2014)
https://doi.org/10.1038/nphoton.2014.248
18 J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995
19 E. Prodan and C. Prodan, Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett. 103(24), 248101 (2009)
https://doi.org/10.1103/PhysRevLett.103.248101
20 C. L. Kane and T. C. Lubensky, Topological boundary modes in isostatic lattices, Nat. Phys. 10, 39 (2014)
https://doi.org/10.1038/nphys2835
21 P. Wang, L. Lu, and K. Bertoldi, Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett. 115(10), 104302 (2015)
https://doi.org/10.1103/PhysRevLett.115.104302
22 M. F. Atiyah and D. W. Anderson, K-Theory, WA Benjamin New York, 1967
23 M. F. Atiyah, K-theory and reality, Q. J. Math. 17(1), 367 (1966)
https://doi.org/10.1093/qmath/17.1.367
24 G. Segal, Equivariant K-theory, Publications mathématiques de l’IHÉS 34(1), 129 (1968)
https://doi.org/10.1007/BF02684593
25 D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
https://doi.org/10.1103/PhysRevB.27.6083
26 Q. Niu and D. J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and manybody interaction,J. Phys. Math. Gen. 17(12), 2453 (1984)
https://doi.org/10.1088/0305-4470/17/12/016
27 L. Fu and C. L. Kane, Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev. B 74(19), 195312 (2006)
https://doi.org/10.1103/PhysRevB.74.195312
28 Y. Yu, Y. S. Wu, and X. Xie, Bulk-edge correspondence, spectral flow and Atiyah–Patodi–Singer theorem for the invariant in topological insulators, Nucl. Phys. B 916, 550 (2017)
29 T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer Science & Business Media, 2013
30 F. J. Dyson, The threefold way, J. Math. Phys. 3(6), 1199 (1962)
https://doi.org/10.1063/1.1703863
31 Here we consider the case of strong topological insulators, which means the BZ torus is treated as a sphere.
32 A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)
https://doi.org/10.1063/1.3149495
33 J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
https://doi.org/10.1103/PhysRevLett.62.2747
34 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
35 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
[1] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[2] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[3] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[4] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[5] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[6] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[7] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[8] Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
[9] Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors[J]. Front. Phys. , 2013, 8(5): 491-508.
[10] Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Front. Phys. , 2012, 7(2): 208-217.
[11] Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front. Phys. , 2012, 7(2): 200-207.
[12] Jun-liang Zhang, Si-jia Zhang, Hong-ming Weng, Wei Zhang, Liu-xiang Yang, Qing-qing Liu, Pan-pan Kong, Jie Zhu, Shao-min Feng, Xian-cheng Wang, Ri-cheng Yu, Lie-zhao Cao, Shoucheng Zhang, Xi Dai, Zhong Fang, Chang-qing Jin. Superconductivity of topological matters induced via pressure[J]. Front. Phys. , 2012, 7(2): 193-199.
[13] Yulin Chen. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy[J]. Front. Phys. , 2012, 7(2): 175-192.
[14] Yong-qing Li, Ke-hui Wu, Jun-ren Shi, Xin-cheng Xie. Electron transport properties of three-dimensional topological insulators[J]. Front. Phys. , 2012, 7(2): 165-174.
[15] Zhi-yong Wang, Peng Wei, Jing Shi. Tuning the Fermi level in Bi2Se3 bulk materials and transport devices[J]. Front. Phys. , 2012, 7(2): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed