Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (2) : 21602    https://doi.org/10.1007/s11467-019-0944-x
RESEARCH ARTICLE
Directional quantum random walk induced by coherence
Jin-Fu Chen1,2, Yu-Han Ma1,2(), Chang-Pu Sun1,2()
1. Beijing Computational Science Research Center, Beijing 100193, China
2. Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
 Download: PDF(2038 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker’s position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker’s position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker’s position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker’s position distribution.

Keywords quantum walk      random walk      ensemble interpretation      directional walking      coherence     
Corresponding Author(s): Yu-Han Ma,Chang-Pu Sun   
Issue Date: 08 January 2020
 Cite this article:   
Jin-Fu Chen,Yu-Han Ma,Chang-Pu Sun. Directional quantum random walk induced by coherence[J]. Front. Phys. , 2020, 15(2): 21602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0944-x
https://academic.hep.com.cn/fop/EN/Y2020/V15/I2/21602
1 N. van Kampen, in: Stochastic Processes in Physics and Chemistry, 3rd Ed., North-Holland Personal Library, edited by N. V. Kampen, Elsevier, Amsterdam, 2007, p.ix
https://doi.org/10.1016/B978-044452965-7/50006-4
2 Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
https://doi.org/10.1103/PhysRevA.48.1687
3 A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM Press, 2001
4 V. Kendo, Decoherence in quantum walks – a review, Math. Struct. Comput. Sci. 17(6), 1169 (2007)
https://doi.org/10.1017/S0960129507006354
5 S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
https://doi.org/10.1007/s11128-012-0432-5
6 G. Grimmett, S. Janson, and P. F. Scudo, Weak limits for quantum random walks, Phys. Rev. E 69(2), 026119 (2004)
https://doi.org/10.1103/PhysRevE.69.026119
7 G. Abal, R. Siri, A. Romanelli, and R. Donangelo, Quantum walk on the line: Entanglement and nonlocal initial conditions, Phys. Rev. A 73(4), 042302 (2006)
https://doi.org/10.1103/PhysRevA.73.042302
8 L. Ermann, J. P. Paz, and M. Saraceno, Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin, Phys. Rev. A 73(1), 012302 (2006)
https://doi.org/10.1103/PhysRevA.73.012302
9 N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Phys. Rev. A 67(5), 052307 (2003)
https://doi.org/10.1103/PhysRevA.67.052307
10 A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
https://doi.org/10.1103/PhysRevLett.102.180501
11 N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Universal quantum computation using the discrete-time quantum walk, Phys. Rev. A 81(4), 042330 (2010)
https://doi.org/10.1103/PhysRevA.81.042330
12 P. Witthaut, Quantum walks and quantum simulations with Bloch-oscillating spinor atoms, Rev. A 82(3), 033602 (2010)
https://doi.org/10.1103/PhysRevA.82.033602
13 M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem. Phys. 129(17), 174106 (2008)
https://doi.org/10.1063/1.3002335
14 T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
https://doi.org/10.1038/ncomms1872
15 K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue, Simulating dynamic quantum phase transitions in photonic quantum walks, Phys. Rev. Lett. 122(2), 020501 (2019)
https://doi.org/10.1103/PhysRevLett.122.020501
16 J. Z. Wu, W. W. Zhang, and B. C. Sanders, Topological quantum walks: Theory and experiments, Front. Phys. 14(6), 61301 (2019)
https://doi.org/10.1007/s11467-019-0918-z
17 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum walks driven by many coins, Phys. Rev. A 67(5), 052317 (2003)
https://doi.org/10.1103/PhysRevA.67.052317
18 T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. Math. Gen. 35(12), 2745 (2002)
https://doi.org/10.1088/0305-4470/35/12/304
19 A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations, Phys. Rev. Lett. 104(5), 050502 (2010)
https://doi.org/10.1103/PhysRevLett.104.050502
20 S. Panahiyan and S. Fritzsche, Controlling quantum random walk with a step-dependent coin, New J. Phys. 20(8), 083028 (2018)
https://doi.org/10.1088/1367-2630/aad899
21 M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
https://doi.org/10.1126/science.1174436
22 F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104(10), 100503 (2010)
https://doi.org/10.1103/PhysRevLett.104.100503
23 H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
https://doi.org/10.1103/PhysRevLett.103.090504
24 P. Xue, B. C. Sanders, and D. Leibfried, Quantum walk on a line for a trapped ion, Phys. Rev. Lett. 103(18), 183602 (2009)
https://doi.org/10.1103/PhysRevLett.103.183602
25 M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, Discrete single-photon quantum walks with tunable decoherence, Phys. Rev. Lett. 104(15), 153602 (2010)
https://doi.org/10.1103/PhysRevLett.104.153602
26 A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, Quantum walks of correlated photons, Science 329(5998), 1500 (2010)
https://doi.org/10.1126/science.1193515
27 H. Tang, X. F. Lin, Z. Feng, J. Y. Chen, J. Gao, K. Sun, C. Y. Wang, P. C. Lai, X.-Y. Xu, Y. Wang, L. F. Qiao, A. L. Yang, and X. M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4(5), eaat3174 (2018)
https://doi.org/10.1126/sciadv.aat3174
28 Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
https://doi.org/10.1126/science.aaw1611
29 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum random walks with decoherent coins, Phys. Rev. A 67(3), 032304 (2003)
https://doi.org/10.1103/PhysRevA.67.032304
30 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum to classical transition for random walks, Phys. Rev. Lett. 91(13), 130602 (2003)
https://doi.org/10.1103/PhysRevLett.91.130602
31 K. Zhang, Limiting distribution of decoherent quantum random walks, Phys. Rev. A 77(6), 062302 (2008)
https://doi.org/10.1103/PhysRevA.77.062302
32 J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Quantum stochastic walks: A generalization of classical random walks and quantum walks, Phys. Rev. A 81(2), 022323 (2010)
https://doi.org/10.1103/PhysRevA.81.022323
33 J. Košík, V. Bužek, and M. Hillery, Quantum walks with random phase shifts, Phys. Rev. A 74(2), 022310 (2006)
https://doi.org/10.1103/PhysRevA.74.022310
34 P. Ribeiro, P. Milman, and R. Mosseri, Aperiodic quantum random walks, Phys. Rev. Lett. 93(19), 190503 (2004)
https://doi.org/10.1103/PhysRevLett.93.190503
35 L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
https://doi.org/10.1103/PhysRevLett.79.325
[1] Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟). Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay[J]. Front. Phys. , 2020, 15(1): 13602-.
[2] Alexey E. Rastegin. Degradation of Grover’s search under collective phase flips in queries to the oracle[J]. Front. Phys. , 2018, 13(5): 130318-.
[3] Long-Mei Yang, Bin Chen, Shao-Ming Fei, Zhi-Xi Wang. Dynamics of coherence-induced state ordering under Markovian channels[J]. Front. Phys. , 2018, 13(5): 130310-.
[4] Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence[J]. Front. Phys. , 2018, 13(4): 130701-.
[5] Alexey E. Rastegin. Uncertainty relations for quantum coherence with respect to mutually unbiased bases[J]. Front. Phys. , 2018, 13(1): 130304-.
[6] Giacomo Mauro D’Ariano, Paolo Perinotti. Quantum cellular automata and free quantum field theory[J]. Front. Phys. , 2017, 12(1): 120301-.
[7] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[8] Xiao-Hui Li,Guang Yang,Ji-Ping Huang. Chaotic-periodic transition in a two-sided minority game[J]. Front. Phys. , 2016, 11(4): 118901-.
[9] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[10] Wenxi Lai, Chao Zhang, Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence[J]. Front. Phys. , 2015, 10(1): 108501-.
[11] Shuai Liu, Zhi-Wei He, Meng Zhan. Firing rates of coupled noisy excitable elements[J]. Front. Phys. , 2014, 9(1): 120-127.
[12] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
[13] Alice Sinatra, Jean-Christophe Dornstetter, Yvan Castin. Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature[J]. Front. Phys. , 2012, 7(1): 86-97.
[14] Wen YANG, Zhen-Yu WANG, Ren-Bao LIU. Preserving qubit coherence by dynamical decoupling[J]. Front. Phys. , 2011, 6(1): 2-14.
[15] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed