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Implications on the origin of cosmic rays in light of 10 TV spectral softenings
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Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviat-
ing from single power-laws, which give very interesting and important implications on their origin and
propagation. Previous measurements from a few balloon and space experiments indicate the existence
of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently,
the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals
such a softening with a high significance. Here we study the implications of these new measurements, as
well as the groundbased indirect measurements, on the origin of CRs. We find that a single component
of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the
framework of multiple components, we discuss two possible scenarios, the multiple source population
scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the
wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby
source model is favored.

Keywords cosmic rays

1 Introduction

The origin of cosmic rays (CRs) remains an unresolved
question after more than one century since their discovery.
To identify the sources of CRs is difficult due to that the
diffusive propagation of charged particles in the random
magnetic field results in the loss of the original directions
of CRs. Precise measurements of the energy spectra of var-
ious species of CRs are helpful in understanding their ori-
gin and propogation. The energy spectra of CRs from the
acceleration sources are generally believed to be power-
laws with cutoffs due to the maximum acceleration limits
of specific types of sources. The diffusion in the Galaxy re-
sults in softenings of the accelerated spectra, by a power-
law of E−δ, which reflects the energy-dependence of the
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diffusion coefficient and hence the turbulent properties of
the interstellar medium. Such an effect has been supported
by the measurement of the secondary-to-primary flux ra-
tios of CR nuclei [1].

However, several balloon and space experiments re-
vealed remarkable spectral hardenings of CR nuclei
around a few hundred GV rigidities [2–8]. These results
inspire quite a number of discussions of their possible im-
plications on the origin [9–15], acceleration [16–18], and
propagation [19–26] of CRs. The AMS-02 measurements
of the spectra of the secondary family of nuclei, Li, Be, and
B, show that on average their spectra harden above ∼ 200
GV by E0.13 more than that of the primary family of He,
C, and O [27], which indicates that the spectral harden-
ings may have a propagation origin [28]. Nevertheless, it
is shown that the injection hardening scenario can also fit
the data reasonably well in a class of propagation models
with effective reacceleration of particles in the turbulent
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medium [29, 30].
Improved direct measurements of the CR spectra at

higher energies are recently available from several exper-
iments. Interestingly, the CREAM [31] and NUCLEON
[32] data show hints that the CR spectra become softer
for rigidities higher than 10 TV. The precise measurement
of the proton spectrum up to 100 TeV by the Dark Matter
Particle Explorer (DAMPE) [33, 34] clearly reveal such a
spectral softening [35]. On the other hand, ground-based
air shower experiemnts show that the all-particle spec-
trum has a so-called “knee” at energies of a few PeV (e.g.,
[36–39]). Measurements of the knee of individual compo-
sition have relatively large uncertainties [36, 40]. A few
measurements of the light composition group, e.g., proton
plus helium nuclei, tend to suggest a knee below PeV en-
ergies [41]. Most recently, preliminary results about the
proton plus helium spectra measured by the HAWC ex-
periment showed also a softening at about 30 TeV energies
[42]. Given all these progresses of the measurements, it is
thus very interesting to investigate the implications of the
wide-band direct and indirect measurements on the CR
modeling.

There are some studies based on the data available at
different time [45–51]. In particular, several studies pro-
pose to account for various spectral structures using mul-
tiple populations of CR sources [46–49]. Alternatively, if
there are by chance one or a few nearby sources whose
contributions are different from the sum of the other back-
ground sources, spectral structures may also be produced
[52–58]. In light of the new measurements of the CR spec-
tra, in particular, by the DAMPE, we revisit the modeling
of CR sources from TeV to 100 PeV in a phenomenological
way. Our discussion is within the framework of the above
two scenarios, i.e., multiple populations (denoted as model
A) and nearby sources (denoted as model B), but with
a focus on the O(10) TV spectral features. Both models
have good physical motivations. For model A, for example,
the remnants of different types of supernovae which are
smoothly distributed in the Galactic disk should behave
differently in accelerating CR particles. The sum of their
contributions can result in complicated spectral features.
Alternatively, if the Earth is close to (e.g., ≲ 500 pc) one
single accelerator by chance, the distinct spectral feature
from this nearby source may naturally give the observed
spectral bumps. The purpose of this study is to build an
overall model of CRs to describe as many as possible the
up-to-date observational data in a wide energy range.

2 Origin of the spectral softening

It is clear that the spectral softenings around ∼ 10 TV
do not correspond to the PeV knee of CRs, even for A-
dependent knees of various compositions. To see this ex-
plicitly, we show in Fig. 1 the energy spectra of protons,
Helium, protons plus Helium, and the all-particle one, for

the fitting with one single component of each species. We
assume either an exponential cutoff power-law form or a
broken power-law form to describe the spectral softenings
of CR nuclei, as

Φi(E) = Φ0,i

(
E

TeV

)−γi

× exp
(
− E

Ec,i

)
, (1)

and

Φi(E) = Φ0,i

(
E

TeV

)−γi

×
[
1 +

(
E

Eb,i

)s]−∆γ/s

, (2)

where E is the total energy of a particle, the subscription
i represents different nuclear species, γi is the spectral in-
dex below the energy of the softening, Eb,i (Ec,i) is the
break (cutoff) energy, s is a smoothness parameter, and
∆γ is the change of the spectral index above Eb,i. These
parameters are determined through fitting to the measure-
ments of energy spectra of individual species by ATIC [2],
CREAM [31, 59], NUCLEON [32], and DAMPE [35]. For
different nuclear species, we assume that the break (cut-
off) energy Eb,i (Ec,i) is proportional to either the atomic
number Zi or the mass number Ai, i.e., Eb,i = Ziϵb or
Aiϵb (Ec,i = Ziϵc or Aiϵc). For the broken power-law fit,
the proton spectrum suggests that s = 3.0 and ∆γ = 0.35
can describe the spectral softening well. The other param-
eters are give in Table 1. The results show that the p+He
and the all-particle spectra cannot be reproduced in all
these fittings, and additional spectral structures between
the O(10) TV softening and the knee of CRs are expected
(see also Ref. [60]). In the following we discuss two natural
scenarios of these spectral structures.

2.1 Multiple populations of CR sources

It has been widely postulated that there are more than
one populations of CR sources in the Milky Way. For in-
stance, supernovae of different types may accelerate par-
ticles to different maximum energies, giving various spec-
tral features of CRs [46, 49]. Following Ref. [49], we as-
sume that the spectrum of each population is described by
an exponential cutoff power-law function of Eq. (1). We

Table 1 Spectral parameters of major CR species assuming
∼ 10 TV knees.

Species
Φ0,i

γi
ϵb ϵc

(m−2·s−1·sr−1·TeV−1) (TeV) (TeV)
p 8.79× 10−2 2.57 15 120

He 6.20× 10−2 2.51 15 120

C 1.05× 10−2 2.56 15 120

O 1.35× 10−2 2.56 15 120

Ne 4.73× 10−3 2.56 15 120

Mg 7.43× 10−3 2.56 15 120

Si 8.78× 10−3 2.56 15 120

Fe 1.50× 10−2 2.56 15 120
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Fig. 1 Energy spectra of protons (top-left), Helium (top-right), proton plus Helium (bottom-left), and all species (bottom-
right). In each panel the solid lines show the fitting results with an exponential cutoff form [Eq. (1)], and the dashed lines
show the broken power-law [Eq. (2)] fitting results. The thick lines are for the Z-dependent cutoff/break energies, and the thin
lines are for the A-dependent cases. References of the data: protons, ATIC [2], CREAM [31], NUCLEON [32], CALET [8],
DAMPE [35], KASCADE [43]; Helium, ATIC [2], CREAM [31], NUCLEON [32], KASCADE [43]; p+He, ATIC [2], CREAM
[31], ARGO-YBJ [44], ARGO-WFCTA [41]; all-particle, Tibet-III [38], KASCADE [36], GAMMA [39], TUNKA [37].

further assume that the cutoff energies of different species
of each population depend on the atomic number Zi, i.e.,
Ec,i = Ziϵc. The fitting results of the major species as
well as the all-particle spectrum are shown in Fig. 2. The
spectral parameters are summarized in Table 2.

In this scenario, the spectral bumps around 10 TeV are
ascribed to the cutoff of population I, with a characteris-
tic cutoff rigidity of ∼ 60 TV. The spectra become harder
again for rigidities higher than ∼ 100 TV, due to the con-
tribution from population II. The cutoff rigidity of popu-

lation II is about 4 PV, which corresponds to the knee of
the all-particle spectrum. We note that the expected spec-
trum of p+He of this model should also show bump-like
feature as that seen in the spectra of protons and He-
lium. The data from CREAM do show hints of this kind
of feature [31]. The preliminary result about the p+He
spectrum by HAWC also shows the bump feature at ∼ 30
TeV [42], consistent with the model fittings in this work.
However, the ARGO-WFCTA data show that the knee of
the p+He spectrum is around 700 TeV, which is lower than

Table 2 Spectral parameters of model A.

Pop. I Pop. II
Species Φ0,i

γi
ϵc Φ0,i

γi
ϵc

(m−2·s−1·sr−1·TeV−1) (TeV) (m−2·s−1·sr−1·TeV−1) (TeV)
p 7.78× 10−2 2.60 56 1.15× 10−2 2.33 4.0× 103

He 5.84× 10−2 2.51 56 6.30× 10−3 2.30 4.0× 103

C 9.92× 10−3 2.50 56 7.00× 10−4 2.30 4.0× 103

O 1.66× 10−2 2.50 56 1.10× 10−3 2.30 4.0× 103

Ne 2.40× 10−3 2.50 56 1.37× 10−4 2.30 4.0× 103

Mg 3.52× 10−3 2.50 56 2.22× 10−4 2.30 4.0× 103

Si 6.08× 10−3 2.50 56 3.71× 10−4 2.30 4.0× 103

Fe 7.78× 10−3 2.37 56 2.27× 10−3 2.30 4.0× 103
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Fig. 2 Fitting energy spectra for model A, compared with the data. In each panel, the green and blue dashed curves show
the contributions of each source population, and the solid curves are the total contribution. References of the data: Carbon
and Oxygen, AMS-02 [7], CREAM [61]; Neon, Magnesium, and Silicon, ATIC [2], CREAM [61]; Iron, ATIC [2], CREAM [61],
KASCADE [36]. The other references are the same as in Fig. 1.

the 4–8 PeV obtained in our fittings. This is because we
use the KASCADE measurements to determine the cutoff
energy of population II. As shown in Ref. [51], the fit-

ting to KASCADE data does favor a higher cutoff energy
than the fitting to ARGO data. Improved measurements
of the p+He spectra above 100 TeV energies are necessary

24601-4 Chuan Yue, et al., Front. Phys. 15(2), 24601 (2020)



Research article

to understand this slight tension.

2.2 Nearby source(s)

The other scenario to ascribe these spectral features to the
contribution of nearby source(s). We assume that the ma-
jorities of the observed CR fluxes are due to a background

component from the population of sources, and a nearby
source component contributes to the ∼ 10 TV spectral
bumps. The energy spectra of both the background and
the nearby components are assumed to be exponentially
cutoff power-law functions. The fitting results are shown
in Fig. 3, with best-fit parameters compiled in Table 3.
For the nearby source, the spectral index is about 2.1 and

Fig. 3 Same as Fig. 2 but for model B.
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Table 3 Spectral parameters of model B.

Background Nearby source
Species Φ0,i

γi
ϵc Φ0,i

γi
ϵc

(m−2·s−1·sr−1·TeV−1) (TeV) (m−2·s−1·sr−1·TeV−1) (TeV)
p 7.41× 10−2 2.66 6.0× 103 1.18× 10−2 2.10 18

He 5.55× 10−2 2.60 6.0× 103 9.30× 10−3 2.10 18

C 1.02× 10−2 2.60 6.0× 103 1.10× 10−3 2.10 18

O 1.63× 10−2 2.60 6.0× 103 2.20× 10−3 2.10 18

Ne 2.40× 10−3 2.60 6.0× 103 2.64× 10−4 2.10 18

Mg 3.52× 10−3 2.60 6.0× 103 4.03× 10−4 2.10 18

Si 6.08× 10−3 2.60 6.0× 103 6.37× 10−4 2.10 18

Fe 1.16× 10−2 2.48 6.0× 103 1.28× 10−3 2.10 18

the cutoff rigidity is about 20 TV. Note that in Ref. [55]
a slightly higher cutoff rigidity of ∼ 70 TV was derived to
fit the CREAM data. This difference is probably due to
that the DAMPE data is used in the fit here, and we ne-
glect the CR propagation in this work. This nearby source
model (model B) gives comparable goodness-of-fit to the
current data, compared with model A described in Sec. III
A. These two models may have slight differences in pre-
dicting the spectra between 100 TeV and 10 PeV where
measurements are lacking. However, we should note that
such differences may become smaller through adjusting
the model parameters.

Nevertheless, there is a potentially significant difference
between models A and B, i.e., the predicted anisotropy
pattern of arrival directions of CRs. For model A, the
predicted large-scale anisotropies of CRs are the same as
the conventional CR diffusion model with a single compo-
nent of source distribution. The amplitudes of the dipole
anisotropies are proportional to Eδ, where δ is the energy-
dependent slope of the diffusion coefficient. The direc-
tion of the anisotropy pattern points from the Galac-
tic center to the anti-center. These model predictions
are, however, inconsistent with the measurements of the
anisotropies [62–66]. Model B can explain the anisotropy
data well [54, 55]. As suggested in Ref. [55], a local source
located in the direction that close to Geminga, together
with the background source component, can simultane-
ously explain the spectral features of CR protons and He-
lium nuclei and the amplitudes and phases of the dipole
anisotropies. Specifically, the nearby source dominates the
low-energy (E < 100 TeV) anisotropies with phases be-
ing determined by the direction of the source, and the
background dominates the high-energy (E > 100 TeV)
anisotropies with phases pointing from the Galactic cen-
ter to the anti-center.

3 Conclusion

Direct measurements of the CR spectra up to 100 TeV by
CREAM, NUCLEON, and particularly by DAMPE with
high-precision, reveal spectral softenings around ∼ 10 TV

rigidities. In this work we discuss possible origins of these
results, taking into account the wide-band measurements
of the CR energy spectra of various mass groups. We show
that employing two populations of CR sources with cut-
off rigidities of ∼ 60 TV and ∼ 4 PV can properly fit the
measured energy spectra of the main species as well as the
all-particle spectrum. Alternatively, including a nearby
source on top of the background component gives similar
fitting to the spectra. The nearby source model can addi-
tionally explain the amplitudes and phases of the large-
scale anisotropies of CRs, as long as the source is located
at a proper direction in the sky. It has been found that
the Geminga supernova remnant may be a promising can-
didate of such a local source [55].

The revealing of new spectral features of CRs is shown
to be able to give very interesting implications on the
physics of CRs. The measurement uncertainties of the en-
ergy spectra of different mass groups are relatively large
for energies higher than 100 TeV, due to the low statis-
tics (for space detection) or the poor composition resolu-
tion (for ground-based detection). The under construction
Large High Altitude Air Shower Observatory (LHAASO)
[67] and the proposed High Energy cosmic-Radiation De-
tection (HERD) [68] facility onboard the Chinese Space
Station are expected to significantly improve the preci-
sion of CR spectral measurements. Particularly, the mea-
surements of anisotropies of different mass groups by
LHAASO will be essentially helpful in understanding the
spectral softening features, the knee structures, and the
origin of CRs in general.
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