|
|
Transferring entangled states of photonic cat-state qubits in circuit QED |
Tong Liu1, Zhen-Fei Zheng2, Yu Zhang3, Yu-Liang Fang1, Chui-Ping Yang1( ) |
1. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China 2. Key Laboratory of Quantum Information, University of Science and Technology of China, Heifei 230026, China 3. School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We propose a method for transferring quantum entangled states of two photonic cat-state qubits (cqubits) from two microwave cavities to the other two microwave cavities. This proposal is realized by using four microwave cavities coupled to a superconducting flux qutrit. Because of using four cavities with different frequencies, the inter-cavity crosstalk is significantly reduced. Since only one coupler qutrit is used, the circuit resource is minimized. The entanglement transfer is completed with a singlestep operation only, thus this proposal is quite simple. The third energy level of the coupler qutrit is not populated during the state transfer, therefore decoherence from the higher energy level is greatly suppressed. Our numerical simulations show that high-fidelity transfer of two-cqubits entangled states from two transmission line resonators to the other two transmission line resonators is feasible with current circuit QED technology. This proposal is universal and can be applied to accomplish the same task in a wide range of physical systems, such as four microwave or optical cavities, which are coupled to a natural or artificial three-level atom.
|
Keywords
transferring quantum entangled states
photonic cat-state
microwave cavities
|
Corresponding Author(s):
Chui-Ping Yang
|
Issue Date: 20 January 2020
|
|
1 |
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantuminterferencedevice qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
|
2 |
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
|
3 |
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
|
4 |
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)
https://doi.org/10.1063/1.2155757
|
5 |
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)
https://doi.org/10.1038/nature07128
|
6 |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
|
7 |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
|
8 |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
|
9 |
P. B. Li, Y. C. Liu, S. Y. Gao, Z. L. Xiang, P. Rabl, Y. F. Xiao, and F. L. Li, Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities, Phys. Rev. Appl. 4(4), 044003 (2015)
https://doi.org/10.1103/PhysRevApplied.4.044003
|
10 |
C. P. Yang, S. I. Chu, and S. Han, Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett. 92(11), 117902 (2004)
https://doi.org/10.1103/PhysRevLett.92.117902
|
11 |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
https://doi.org/10.1038/nature02851
|
12 |
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)
https://doi.org/10.1038/nphys1730
|
13 |
Q. Q. Wu, J. Q. Liao, and L. M. Kuang, Quantum state transfer between charge and flux qubits in circuit-QED, Chin. Phys. Lett. 25(4), 1179 (2008)
https://doi.org/10.1088/0256-307X/25/4/005
|
14 |
Z. B. Feng, Quantum state transfer between hybrid qubits in a circuit QED, Phys. Rev. A 85(1), 014302 (2012)
https://doi.org/10.1103/PhysRevA.85.014302
|
15 |
C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)
https://doi.org/10.1088/1367-2630/15/11/115003
|
16 |
C. P. Yang and S. Han, n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
https://doi.org/10.1103/PhysRevA.72.032311
|
17 |
C. P. Yang, Y. X. Liu, and F. Nori, Phase gate of one qubit simultaneously controlling nqubits in a cavity, Phys. Rev. A 81(6), 062323 (2010)
https://doi.org/10.1103/PhysRevA.81.062323
|
18 |
C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, Single-step implementation of a multiple target-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39(11), 3312 (2014)
https://doi.org/10.1364/OL.39.003312
|
19 |
H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
https://doi.org/10.1364/OL.39.001489
|
20 |
Z. P. Hong, B. J. Liu, J. Q. Cai, X. D. Zhang, Y. Hu, Z. D. Wang, and Z. Y. Xue, Implementing universal nonadiabatic holonomic quantum gates with transmons, Phys. Rev. A 97(2), 022332 (2018)
https://doi.org/10.1103/PhysRevA.97.022332
|
21 |
B. Ye, Z. F. Zheng, and C. P. Yang, Multiplex-controlled phase gate with qubits distributed in a multicavity system, Phys. Rev. A 97(6), 062336 (2018)
https://doi.org/10.1103/PhysRevA.97.062336
|
22 |
S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)
https://doi.org/10.1103/PhysRevLett.94.100502
|
23 |
X. L. Zhang, K. L. Gao, and M. Feng, Preparation of cluster states and W states with superconducting quantuminterference-device qubits in cavity QED, Phys. Rev. A 74(2), 024303 (2006)
https://doi.org/10.1103/PhysRevA.74.024303
|
24 |
Z. J. Deng, K. L. Gao, and M. Feng, Generation of Nqubit W states with rf SQUID qubits by adiabatic passage, Phys. Rev. A 74(6), 064303 (2006)
https://doi.org/10.1103/PhysRevA.74.064303
|
25 |
F. Helmer, and F. Marquardt, Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED, Phys. Rev. A 79(5), 052328 (2009)
https://doi.org/10.1103/PhysRevA.79.052328
|
26 |
S. Aldana, Y. D. Wang, and C. Bruder, Greenberger- Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
https://doi.org/10.1103/PhysRevB.84.134519
|
27 |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
|
28 |
X. T. Mo, and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
|
29 |
Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary non-adiabatic holonomic singlequbit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)
https://doi.org/10.1103/PhysRevLett.121.110501
|
30 |
T. Wang, Z. Zhang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Gong, Z. Zong, M. Wu, J. Wu, L. Sun, Y. Yin, and G. Guo, The experimental realization of high-fidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, arXiv: 1804.08247 (2018)
https://doi.org/10.1088/1367-2630/aac9e7
|
31 |
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79, 180511(R) (2009)
https://doi.org/10.1103/PhysRevB.79.180511
|
32 |
J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, Simple All-microwave entangling gate for fixed-frequency superconducting qubits, Phys. Rev. Lett. 107(8), 080502 (2011)
https://doi.org/10.1103/PhysRevLett.107.080502
|
33 |
M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Implementing the quantum von neumann architecture with superconducting circuits, Science 334(6052), 61 (2011)
https://doi.org/10.1126/science.1208517
|
34 |
A. Fedorov, L. Steffen, M. Baur, M. P. daSilva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)
https://doi.org/10.1038/nature10713
|
35 |
C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J .W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
https://doi.org/10.1103/PhysRevLett.119.180511
|
36 |
M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.Y. Lu, X. Zhu, and J. W. Pan, Genuine12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122(11), 110501 (2019)
https://doi.org/10.1103/PhysRevLett.122.110501
|
37 |
C. Song, K. Xu, H. Li, Y. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. Wang, H. Wang, and S. Zhu, Observation of multi-component atomic Schrodinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)
https://doi.org/10.1126/science.aay0600
|
38 |
L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, and A. Wallraff, Deterministic quantum teleportation with feed-forward in a solid state system., Nature 500(7462), 319 (2013)
https://doi.org/10.1038/nature12422
|
39 |
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054009
|
40 |
W. Ning, X. J. Huang, P. R. Han, H. Li, H. Deng, Z. B. Yang, Z. R. Zhong, Y. Xia, K. Xu, D. Zheng, and S. B. Zheng, Deterministic entanglement swapping in a superconducting circuit, arXiv: 1902.10959 (2019)
https://doi.org/10.1103/PhysRevLett.123.060502
|
41 |
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
https://doi.org/10.1126/science.aaw1611
|
42 |
W. Chen, D. A. Bennett, V. Patel, and J. E. Lukens, Substrate and process dependent losses in superconducting thin film resonators, Supercond. Sci. Technol. 21(7), 075013 (2008)
https://doi.org/10.1088/0953-2048/21/7/075013
|
43 |
P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and A. Wallraff, Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett. 104(10), 100504 (2010)
https://doi.org/10.1103/PhysRevLett.104.100504
|
44 |
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED,Phys. Rev. B 94(1), 014506 (2016)
https://doi.org/10.1103/PhysRevB.94.014506
|
45 |
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
https://doi.org/10.1126/science.1231930
|
46 |
M. Mariantoni, M. J. Storcz, F. K. Wilhelm, W. D. Oliver, A. Emmert, A. Marx, R. Gross, H. Christ, and E. Solano, On-chip microwave Fock states and quantum homodyne measurements, arXiv: cond-mat/0509737 (2005)
|
47 |
Y. X. Liu, L. F. Wei, and F. Nori, Generation of nonclassical photon states using a superconducting qubit in a microcavity, Europhys. Lett. 67(6), 941 (2004)
https://doi.org/10.1209/epl/i2004-10144-3
|
48 |
K. Moon and S. M. Girvin, Theory of microwave parametric down-conversion and squeezing using circuit QED, Phys. Rev. Lett. 95(14), 140504 (2005)
https://doi.org/10.1103/PhysRevLett.95.140504
|
49 |
F. Marquardt and C. Bruder, Superposition of two mesoscopically distinct quantum states: Coupling a Cooperpair box to a large superconducting island, Phys. Rev. B 63(5), 054514 (2001)
https://doi.org/10.1103/PhysRevB.63.054514
|
50 |
Y. X. Liu, L. F. Wei, and F. Nori, Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit, Phys. Rev. A 71(6), 063820 (2005)
https://doi.org/10.1103/PhysRevA.71.063820
|
51 |
J. Q. Liao, J. F. Huang, and L. Tian, Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A (Coll. Park) 93(3), 033853 (2016)
https://doi.org/10.1103/PhysRevA.93.033853
|
52 |
X. Y. Lö, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A (Coll. Park) 97(3), 033807 (2018)
https://doi.org/10.1103/PhysRevA.97.033807
|
53 |
F. W. Strauch, K. Jacobs, and R. W. Simmonds, Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett. 105(5), 050501 (2010)
https://doi.org/10.1103/PhysRevLett.105.050501
|
54 |
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
|
55 |
P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86(1), 012318 (2012)
https://doi.org/10.1103/PhysRevA.86.012318
|
56 |
C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)
https://doi.org/10.1103/PhysRevA.87.022320
|
57 |
Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)
https://doi.org/10.1103/PhysRevA.95.022339
|
58 |
C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A 95(5), 052341 (2017)
https://doi.org/10.1103/PhysRevA.95.052341
|
59 |
S. T. Merkel and F. K. Wilhelm, Generation and detection of NOON states in superconducting circuits, New J. Phys. 12(9), 093036 (2010)
https://doi.org/10.1088/1367-2630/12/9/093036
|
60 |
Y. J. Zhao, C. Q. Wang, X. Zhu, and Y. X. Liu, Engineering entangled microwave photon states via multiphoton transitions between two cavities and a superconducting qubit, arXiv: 1506.06363 (2015)
|
61 |
S. J. Xiong, Z. Sun, J. M. Liu, T. Liu, and C. P. Yang, Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett. 40(10), 2221 (2015)
https://doi.org/10.1364/OL.40.002221
|
62 |
M. Hua, M. J. Tao, and F. G. Deng, Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90(1), 012328 (2014)
https://doi.org/10.1103/PhysRevA.90.012328
|
63 |
M. Hua, M. J. Tao, and F. G. Deng, Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5(1), 9274 (2015)
https://doi.org/10.1038/srep09274
|
64 |
B. Ye, Z. F. Zheng, Y. Zhang, C. P. Yang, and Q. E. D. Circuit, single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n−1 microwave photonic qubits, Opt. Express 26(23), 30689 (2018)
https://doi.org/10.1364/OE.26.030689
|
65 |
M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator, Nature 459(7246), 546 (2009)
https://doi.org/10.1038/nature08005
|
66 |
M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature 454(7202), 310 (2008)
https://doi.org/10.1038/nature07136
|
67 |
H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, A. N. Cleland, and J. M. Martinis, Measurement of the decay of Fock states in a superconducting quantum circuit, Phys. Rev. Lett. 101(24), 240401 (2008)
https://doi.org/10.1103/PhysRevLett.101.240401
|
68 |
Y. Xu, W. Cai, Y. Ma, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. Song, Z. B. Yang, S. B. Zheng, and L. Sun, Geometrically manipulating photonic Schrödinger cat states and realizing cavity phase gates, arXiv: 1810.04690 (2018)
|
69 |
H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett. 106(6), 060401 (2011)
https://doi.org/10.1103/PhysRevLett.106.060401
|
70 |
M. Mariantoni, H. Wang, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Photon shell game in threeresonator circuit quantum electrodynamics, Nat. Phys. 7(4), 287 (2011)
https://doi.org/10.1038/nphys1885
|
71 |
L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, and L. Sun, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit., Nat. Phys. 15(5), 503 (2019)
https://doi.org/10.1038/s41567-018-0414-3
|
72 |
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
https://doi.org/10.1038/s41467-017-00045-1
|
73 |
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
https://doi.org/10.1038/nature18949
|
74 |
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
|
75 |
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
https://doi.org/10.1088/1367-2630/16/4/045014
|
76 |
S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A 89(2), 022340 (2014)
https://doi.org/10.1103/PhysRevA.89.022340
|
77 |
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled-phase gate with cat-state qubits in circuit QED, Phys. Rev. A 96(5), 052317 (2017)
https://doi.org/10.1103/PhysRevA.96.052317
|
78 |
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
|
79 |
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
https://doi.org/10.1038/s41467-017-00045-1
|
80 |
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
https://doi.org/10.1126/science.aaf2941
|
81 |
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79(18), 180511 (2009)
https://doi.org/10.1103/PhysRevB.79.180511
|
82 |
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
https://doi.org/10.1063/1.2929367
|
83 |
D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
|
84 |
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)
https://doi.org/10.1103/PhysRevB.75.140515
|
85 |
M. Steffen, S. Kumar, D. P. DiVincenzo, J. R. Rozen, G. A. Keefe, M. B. Rothwell, and M. B. Ketchen, Highcoherence hybrid superconducting qubit, Phys. Rev. Lett. 105(10), 100502 (2010)
https://doi.org/10.1103/PhysRevLett.105.100502
|
86 |
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
https://doi.org/10.1038/ncomms12964
|
87 |
M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit, Phys. Rev. Lett. 102(24), 243602 (2009)
https://doi.org/10.1103/PhysRevLett.102.243602
|
88 |
F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W. D. Oliver, and J. S. Tsai, Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions, Phys. Rev. B 89(2), 020503 (2014)
https://doi.org/10.1103/PhysRevB.89.020503
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|