|
|
|
Bandgap opening in MoTe2 thin flakes induced by surface oxidation |
Yuan Gan1,2, Jiyuan Liang2, Chang-woo Cho2, Si Li3,4, Yanping Guo2, Xiaoming Ma2,5, Xuefeng Wu2, Jinsheng Wen1, Xu Du6, Mingquan He7, Chang Liu2, Shengyuan A. Yang4, Kedong Wang2, Liyuan Zhang2( ) |
1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 2. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 3. School of Physics and Electronics, Hunan Normal University, Changsha 410081, China 4. Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore 5. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 6. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA 7. Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China |
|
|
|
|
Abstract Recently, the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties. Here, we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport, scanning tunnelling microscope (STM) measurements and band structure calculations. For a bulk sample, it exhibits large magneto-resistance (MR) and Shubnikov–de Hass oscillations in ρxx and a series of Hall plateaus in ρxy at low temperatures. Meanwhile, the MoTe2 thin films were intensively investigated with thickness dependence. For samples, without encapsulation, an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness. In such thin films, we also observed a suppression of the MR and weak anti-localization (WAL) effects. We attributed these effects to disorders originated from the extrinsic surface chemical reaction, which is consistent with the density functional theory (DFT) calculations and in-situ STM results. In contrast to samples without encapsulated protection, we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride (h-BN) film protection. Our results indicate that the metallic or superconducting behavior is its intrinsic state, and the insulating behavior is likely caused by surface oxidation in few layer 1T′-MoTe2 flakes.
|
| Keywords
two-dimensional materials
metal-insulator transition
layered transition metal dichalcogenides (TMDs)
surface oxidation
|
|
Corresponding Author(s):
Liyuan Zhang
|
|
Issue Date: 17 March 2020
|
|
| 1 |
J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18(73), 193 (1969)
https://doi.org/10.1080/00018736900101307
|
| 2 |
R. C. Morris, R. V. Coleman, and R. Bhandari, Superconductivity and magnetoresistance in NbSe2, Phys. Rev. B 5(3), 895 (1972)
https://doi.org/10.1103/PhysRevB.5.895
|
| 3 |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
|
| 4 |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
|
| 5 |
R. A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514, 86 (2015)
https://doi.org/10.1016/j.physc.2015.02.023
|
| 6 |
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
https://doi.org/10.1126/science.1256815
|
| 7 |
K. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
|
| 8 |
J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys. 14(4), 43403 (2019)
https://doi.org/10.1007/s11467-019-0907-2
|
| 9 |
T. Teshome and A. Datta, Topological insulator in twodimensional SiGe induced by biaxial tensile strain, ACS Omega 3(1), 1 (2018)
https://doi.org/10.1021/acsomega.7b01957
|
| 10 |
Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electronic field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)
https://doi.org/10.1021/nl5043769
|
| 11 |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
|
| 12 |
Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Süβ, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Superconductivity in Weyl semimetal candidate MoTe2, Nat. Commun. 7(1), 11038 (2016)
https://doi.org/10.1038/ncomms11038
|
| 13 |
Q. Zhou, D. Rhodes, Q. R. Zhang, S. Tang, R. Schönemann, and L. Balicas, Hall effect within the colossal magnetoresistive semimetallic state of MoTe2, Phys. Rev. B 94(12), 121101 (2016)
https://doi.org/10.1103/PhysRevB.94.121101
|
| 14 |
D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, Bandgap opening in fewlayered monoclinic MoTe2, Nat. Phys. 11(6), 482 (2015)
https://doi.org/10.1038/nphys3314
|
| 15 |
H. P. Hughes and R. H. Friend, Electrical resistivity anomaly in b-MoTe2 (metallic behavior), J. Phys. C Solid State Phys. 11(3), L103 (1978)
https://doi.org/10.1088/0022-3719/11/3/004
|
| 16 |
T. Zandt, H. Dwelk, C. Janowitz, and R. Manzke, Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2, J. Alloys Compd. 442(1–2), 216 (2007)
https://doi.org/10.1016/j.jallcom.2006.09.157
|
| 17 |
Y. Sun, S. C. Wu, M. N. Ali, C. Felser, and B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2, Phys. Rev. B 92(16), 161107 (2015)
https://doi.org/10.1103/PhysRevB.92.161107
|
| 18 |
R. Szczśniak, A. P. Durajski, and M. W. Jarosik, Strongcoupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides, Front. Phys. 13(2), 137401 (2018)
https://doi.org/10.1007/s11467-017-0726-2
|
| 19 |
J. Cui, P. Li, J. Zhou, W. Y. He, X. Huang, J. Yi, J. Fan, Z. Ji, X. Jing, F. Qu, Z. G. Cheng, C. Yang, L. Lu, K. Suenaga, J. Liu, K. T. Law, J. Lin, Z. Liu, and G. Liu, Transport evidence of asymmetric spin-orbit coupling in fewlayer superconducting 1Td-MoTe2, Nat. Commun. 10(1), 2044 (2019)
https://doi.org/10.1038/s41467-019-09995-0
|
| 20 |
Y. Gan, C.W. Cho, A. Li, J. Lyu, X. Du, J. S. Wen, and L. Y. Zhang, Giant enhancement of superconductivity in few layers MoTe2, Chin. Phys. B 28(11), 117401 (2019)
https://doi.org/10.1088/1674-1056/ab457f
|
| 21 |
L. Yang, H. Wu, W. Zhang, Z. Chen, J. Li, X. Lou, Z. Xie, R. Zhu, and H. Chang, Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe2 films, Nanoscale 10(42), 19906 (2018)
https://doi.org/10.1039/C8NR05699D
|
| 22 |
F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. L. Feng, Environmental instability and degradation of singleand few-layer WTe2 nanosheets in ambient conditions, Small 12(42), 5802 (2016)
https://doi.org/10.1002/smll.201601207
|
| 23 |
B. Chen, H. Sahin, A. Suslu, L. Ding, M. I. Bertoni, F. M. Peeters, and S. Tongay, Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction, ACS Nano 9(5), 5326 (2015)
https://doi.org/10.1021/acsnano.5b00985
|
| 24 |
H. Zhu, Q. Wang, L. Cheng, R. Addou, J. Kim, M. J. Kim, and R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing, ACS Nano 11(11), 11005 (2017)
https://doi.org/10.1021/acsnano.7b04984
|
| 25 |
J. M. Woods, J. Shen, P. Kumaravadivel, Y. Pang, Y. Xie, G. A. Pan, M. Li, E. I. Altman, L. Lu, and J. J. Cha, Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation, ACS Appl. Mater. Interfaces 9(27), 23175 (2017)
https://doi.org/10.1021/acsami.7b04934
|
| 26 |
D. Rhodes, R. Schönemann, N. Aryal, Q. Zhou, Q. R. Zhang, E. Kampert, Y.C. Chiu, Y. Lai, Y. Shimura, G. T. McCandless, J. Y. Chan, D. W. Paley, J. Lee, A. D. Finke, J. P. C. Ruff, S. Das, E. Manousakis, and L. Balicas, Bulk Fermi surface of the Weyl type-II semimetallic candidate g-MoTe2, Phys. Rev. B 96(16), 165134 (2017)
https://doi.org/10.1103/PhysRevB.96.165134
|
| 27 |
I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys. 13(2), 025008 (2011)
https://doi.org/10.1088/1367-2630/13/2/025008
|
| 28 |
B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, F. Xiu, and F. Song, Weak antilocalization in Cd3As2 thin films, Sci. Rep. 6(1), 22377 (2016)
https://doi.org/10.1038/srep22377
|
| 29 |
N. P. Breznay, H. Volker, A. Palevski, R. Mazzarello, A. Kapitulnik, and M. Wuttig, Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4, Phys. Rev. B 86(20), 205302 (2012)
https://doi.org/10.1103/PhysRevB.86.205302
|
| 30 |
Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko, P. C. Canfield, N. Trivedi, R. Arita, and A. Kaminski, Temperature-induced Lifshitz transition in WTe2, Phys. Rev. Lett. 115(16), 166602 (2015)
https://doi.org/10.1103/PhysRevLett.115.166602
|
| 31 |
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin–orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)
https://doi.org/10.1143/PTP.63.707
|
| 32 |
G. Bergmann, Weak localization in thin films: A timeofflight experiment with conduction electrons, Phys. Rep. 107(1), 1 (1984)
https://doi.org/10.1016/0370-1573(84)90103-0
|
| 33 |
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett. 105(17), 176602 (2010)
https://doi.org/10.1103/PhysRevLett.105.176602
|
| 34 |
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett. 106(16), 166805 (2011)
https://doi.org/10.1103/PhysRevLett.106.166805
|
| 35 |
J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, and Y. Cui, Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates, Nano Lett. 12(2), 1107 (2012)
https://doi.org/10.1021/nl300018j
|
| 36 |
S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Weak antilocalization and conductance fluctuation in a submicrometersized wire of epitaxial Bi2Se3, Phys. Rev. B 85(7), 075440 (2012)
https://doi.org/10.1103/PhysRevB.85.075440
|
| 37 |
H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Electrical tunable surface-to-bulk coherent coupling in topological insulator thin films, Phys. Rev. B 84(23), 233101 (2011)
https://doi.org/10.1103/PhysRevB.84.233101
|
| 38 |
G. Kresse and J. Hafner, ab initiomolecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
https://doi.org/10.1103/PhysRevB.49.14251
|
| 39 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
| 40 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
| 41 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
| 42 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|