Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (3) : 33603    https://doi.org/10.1007/s11467-020-0955-7
RESEARCH ARTICLE
Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure
X.-J. Hao1, R.-Y. Yuan1(), J.-J. Jin1, Y. Guo2,3
1. Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048, China
2. Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
3. Collaborative Innovation Center of Quantum Matter, Beijing, China
 Download: PDF(1884 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using the transfer matrix method, spin- and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure. Based on Snell’s Law in optics, we define the velocity barrier as ξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure. The results show that both the magnitude and the direction of spin- and valley-dependent electron polarization can be regulated by the velocity barrier. –100% polarization of spin- and valley-dependent electron can be achieved for ξ>1, while 100% polarization can be obtained for ξ<1. Furthermore, it is determined that perfect spin and valley transport always occur at a large incident angle. In addition, the spin- and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x) of the intermediate ferromagnetic region. These findings provide an effective method for designing novel spin and valley electronic devices.

Keywords velocity barrier      monolayer MoS2      spin      valley      polarization     
Corresponding Author(s): R.-Y. Yuan   
Issue Date: 13 April 2020
 Cite this article:   
X.-J. Hao,R.-Y. Yuan,J.-J. Jin, et al. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0955-7
https://academic.hep.com.cn/fop/EN/Y2020/V15/I3/33603
1 X. J. Qiu, Z. Z. Cao, J. M. Lei, J. Shen, and C. C. Qin, Optical and Electric Control of Charge and Spin-Valley Transport in Ferromagnetic Silicene Junction, Superlattices Microstruct. 109, 735 (2017)
https://doi.org/10.1016/j.spmi.2017.05.059
2 M. Tahir, Electrical and optical transport properties of single layer WSe2, Physica E 97, 184 (2017)
https://doi.org/10.1016/j.physe.2017.11.011
3 K. F. Mak, K. L. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
4 H. Li, J. Shao, D. Yao, and G. Yang, Gate-voltagecontrolled spin and valley polarization transport in a normal/ferromagnetic/normal MoS2 junction, ACS Appl. Mater. Interfaces 6(3), 1759 (2014)
https://doi.org/10.1021/am4047602
5 L. F. Sun and Y. Guo, Line-type resonance peaks and their suppression through graphene-based symmetric and asymmetric double barriers, J. Appl. Phys. 109(12), 123719 (2011)
https://doi.org/10.1063/1.3601110
6 H. P. Huang, D. Liu, H. M. Zhang, and X. J. Kong, Electronic transport and shot noise in Thue-Morse sequence graphene superlattice, J. Appl. Phys. 113(4), 043702 (2013)
https://doi.org/10.1063/1.4788676
7 P. Ye, R. Y. Yuan, Y. Y. Xia, and X. Zhao, Spin and valley transport in the ferromagnetic MoS2 junctions subjected by the gate voltage, J. Phys. Conf. Ser. 827, 012011 (2017)
https://doi.org/10.1088/1742-6596/827/1/012011
8 T. Yokoyama, Controllable valley and spin transport in ferromagnetic silicene junctions, Phys. Rev. B 87, 241409(R) (2013)
https://doi.org/10.1103/PhysRevB.87.241409
9 L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
https://doi.org/10.1103/PhysRevB.90.165440
10 H. Haugen, D. Huertas-Hernando, and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B 77(11), 115406 (2008)
https://doi.org/10.1103/PhysRevB.77.115406
11 P. Stepanov, Y. Barlas, S. Che, K. Myhro, G. Voigt, Z. Pi, K. Watanabe, T. Taniguchi, D. Smirnov, F. Zhang, R. K. Lake, A. H. MacDonald, and C. N. Lau, Quantum parity Hall effect in bernal-stacked trilayer graphene, Proc. Natl. Acad. Sci. USA 116(21), 10286 (2019)
https://doi.org/10.1073/pnas.1820835116
12 S. Sun, Y. Yu, J. Dang, K. Peng, X. Xie, F. Song, C. Qian, S. Wu, H. Ali, J. Tang, J. Yang, S. Xiao, S. Tian, M. Wang, X. Shan, M. A. Rafiq, C. Wang, and X. Xu, Large gfactor in bilayer WS2 flakes, Appl. Phys. Lett. 114(11), 113104 (2019)
https://doi.org/10.1063/1.5087440
13 X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, and G. Su, Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides, Phys. Rev. B 99(20), 201410 (2019)
https://doi.org/10.1103/PhysRevB.99.201410
14 E. I. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem, Phys. Rev. B 62(24), R16267 (2000)
https://doi.org/10.1103/PhysRevB.62.R16267
15 G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62(8), R4790 (2000)
https://doi.org/10.1103/PhysRevB.62.R4790
16 N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448(7153), 571 (2007)
https://doi.org/10.1038/nature06037
17 X. Ma, H. Ai, H. Gao, and X. Zhang, Valley polarization and ferroelectricity in two-dimensional GaAsC6 monolayer, Phys. Chem. Chem. Phys. 21, 3954 (2019)
https://doi.org/10.1039/C8CP07444E
18 K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and Other Two-Dimensional Materials, Front. Phys. 14, 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
19 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
20 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
21 G. D. Scholes and G. Rumbles, Excitons in nanoscale systems, Nat. Mater. 5(9), 683 (2006)
https://doi.org/10.1038/nmat1710
22 M. Law, J. Goldberger, and P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34(1), 83 (2004)
https://doi.org/10.1146/annurev.matsci.34.040203.112300
23 Y. L. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
https://doi.org/10.1103/PhysRevLett.113.266804
24 D. MacNeil, C. Heikes, K. F. Mak, Z. Anderson, A. Kormanyos, V. Zolymi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114, 037401 (2015)
https://doi.org/10.1103/PhysRevLett.114.037401
25 G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. W. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 141 (2015)
https://doi.org/10.1038/nphys3201
26 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
https://doi.org/10.1038/nphys3203
27 J. S. Qi, X. Li, Q. Niu, and J. Feng, Giant and tunable valley degeneracy splitting in MoTe2, Phys. Rev. B 92(12), 121403 (2015)
https://doi.org/10.1103/PhysRevB.92.121403
28 Z. F. Liu, W. X. Feng, H. L. Xin, Y. L. Gao, P. F. Liu, Y. G. Yao, H. M. Weng, and J. J. Zhao, Two-dimensional spin–valley-coupled Dirac semimetals in functionalized SbAs monolayers, Mater. Horiz. 6(4), 781 (2019)
https://doi.org/10.1039/C8MH01588K
29 F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
https://doi.org/10.1103/PhysRevLett.100.056802
30 M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
https://doi.org/10.1103/PhysRevLett.61.2472
31 S. Datta and B. Das, Electronic analog of the electronoptic modulator, Appl. Phys. Lett. 56(7), 665 (1990)
https://doi.org/10.1063/1.102730
32 A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
https://doi.org/10.1038/nphys547
33 X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in transition metal dichalcogenides, Nat. Phys. 10, 343 (2014)
https://doi.org/10.1038/nphys2942
34 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
35 H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of singlelayer MoS2, Front. Phys. 13(4), 137307 (2018)
https://doi.org/10.1007/s11467-018-0797-8
36 G. Y. Wu, N. Y. Lue, and Y. C. Chen, Quantum manipulation of valleys in bilayer graphene, Phys. Rev. B 88(12), 125422 (2013)
https://doi.org/10.1103/PhysRevB.88.125422
37 L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
https://doi.org/10.1103/PhysRevB.90.165440
38 P. M. Krstajić, P. Vasilopoulos, and M. Tahir, Spin- and valley-polarized transport through ferromagnetic and antiferromagnetic barriers on monolayer MoS2, Physica E 75, 317 (2016)
https://doi.org/10.1016/j.physe.2015.10.003
39 R. P. Arnaud, Velocity-modulation control of electronwave propagation in graphene, Phys. Rev. B 81, 073407 (2010)
https://doi.org/10.1103/PhysRevB.81.073407
40 A. Concha and Z. Tešanović, Effect of a velocity barrier on the ballistic transport of Dirac fermions, Phys. Rev. B 82(3), 033413 (2010)
https://doi.org/10.1103/PhysRevB.82.033413
41 P. M. Krstaji and P. Vasilopoulos, Ballistic transport through graphene nanostructures of velocity and potential barriers, J. Phys.: Condes. Matter 23, 135302 (2011)
https://doi.org/10.1088/0953-8984/23/13/135302
42 Y. Wang, Y. Liu, and B. Wang, Resonant tunneling and enhanced Goos–Hänchen shift in a graphene double velocity barrier structure, Physica E 53, 186 (2013)
https://doi.org/10.1016/j.physe.2013.05.010
43 J. L. Zhang, W. Fu, K.Y. Wang, S.S. Ke, and H.F. Lü, Effect of a velocity barrier on the spin- and valley-dependent transport in ferromagnetic silicene, Physica B 525, 16 (2017)
https://doi.org/10.1016/j.physb.2017.08.077
44 X. J. Qiu, Q. Lv, and Z. Z. Cao, Velocity barriercontrolled of spin-valley polarized transport in monolayer WSe2 Junction, Superlattices Microstruct. 449, 117 (2018)
https://doi.org/10.1016/j.spmi.2018.03.082
45 C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
https://doi.org/10.1038/nphys890
46 M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale, A. Pinczuk, L. N. Pfeiffer, and K. W. West, Engineering artificial graphene in a two-dimensional electron gas, Phys. Rev. B 79(24), 241406 (2009)
https://doi.org/10.1103/PhysRevB.79.241406
47 A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
https://doi.org/10.1038/nphys477
48 C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering, Phys. Rev. Lett. 101(14), 146805 (2008)
https://doi.org/10.1103/PhysRevLett.101.146805
49 X. Li, F. Zhang, and Q. Niu, Unconventional quantum Hall effect and tunable spin Hall effect in MoS2 trilayers, Phys. Rev. Lett. 110, 066803 (2013)
50 M. Tahir and U. Schwingenschlögl, Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides, New J. Phys. 16(11), 115003 (2014)
https://doi.org/10.1088/1367-2630/16/11/115003
51 Z. Li and J. P. Carbotte, Longitudinal and spin-valley Hall optical conductivity in single layer MoS2, Phys. Rev. B 86(20), 205425 (2012)
https://doi.org/10.1103/PhysRevB.86.205425
52 M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57, 1761 (1986)
https://doi.org/10.1103/PhysRevLett.57.1761
[1] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501-.
[2] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[3] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[4] Yi-Wen Zhang, Shi-Long Su, Shu-Bin Xie, Wei-Min Zhou, Hao Liu. Investigation into the improved axial compressibility of a spinning non-ideal gas[J]. Front. Phys. , 2020, 15(4): 42501-.
[5] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[6] Yang-Yang Fu, Yue Fei, Da-Xing Dong, You-Wen Liu. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601-.
[7] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[8] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[9] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[10] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[11] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[12] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[13] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[14] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[15] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed