Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (4) : 44302    https://doi.org/10.1007/s11467-020-0964-6
TOPICAL REVIEW
Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies
Yong-Jia Wang1, Qing-Feng Li1,2()
1. School of Science, Huzhou University, Huzhou 313000, China
2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 Download: PDF(1943 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The equation of state (EOS) of nuclear matter, i.e., the thermodynamic relationship between the binding energy per nucleon, temperature, density, as well as the isospin asymmetry, has been a hot topic in nuclear physics and astrophysics for a long time. The knowledge of the nuclear EOS is essential for studying the properties of nuclei, the structure of neutron stars, the dynamics of heavy ion collision (HIC), as well as neutron star mergers. HIC offers a unique way to create nuclear matter with high density and isospin asymmetry in terrestrial laboratory, but the formed dense nuclear matter exists only for a very short period, one cannot measure the nuclear EOS directly in experiments. Practically, transport models which often incorporate phenomenological potentials as an input are utilized to deduce the EOS from the comparison with the observables measured in laboratory. The ultrarelativistic quantum molecular dynamics (UrQMD) model has been widely employed for investigating HIC from the Fermi energy (40 MeV per nucleon) up to the CERN Large Hadron Collider energies (TeV). With further improvement in the nuclear mean-field potential term, the collision term, and the cluster recognition term of the UrQMD model, the newly measured collective flow and nuclear stopping data of light charged particles by the FOPI Collaboration can be reproduced. In this article we highlight our recent results on the studies of the nuclear EOS and the nuclear symmetry energy with the UrQMD model. New opportunities and challenges in the extraction of the nuclear EOS from transport models and HIC experiments are discussed.

Keywords nuclear equation of state      symmetry energy      heavy ion collision      transport model     
Corresponding Author(s): Qing-Feng Li   
Issue Date: 15 May 2020
 Cite this article:   
Yong-Jia Wang,Qing-Feng Li. Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies[J]. Front. Phys. , 2020, 15(4): 44302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0964-6
https://academic.hep.com.cn/fop/EN/Y2020/V15/I4/44302
1 B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)
https://doi.org/10.1016/j.physrep.2008.04.005
2 M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C. J. Horowitz, J. Lee, W. G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña, and S. J. Yennello, Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86(1), 015803 (2012)
https://doi.org/10.1103/PhysRevC.86.015803
3 M. Baldo and G. F. Burgio, The nuclear symmetry energy, Prog. Part. Nucl. Phys. 91, 203 (2016)
https://doi.org/10.1016/j.ppnp.2016.06.006
4 M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of state for supernovae and compact stars, Rev. Mod. Phys. 89, 015007 (2017)
https://doi.org/10.1103/RevModPhys.89.015007
5 B. A. Li, B. J. Cai, L. W. Chen, and J. Xu, Nucleon effective masses in neutron-rich matter, Prog. Part. Nucl. Phys. 99, 29 (2018)
https://doi.org/10.1016/j.ppnp.2018.01.001
6 X. Roca-Maza and N. Paar, Nuclear equation of state from ground and collective excited state properties of nuclei, Prog. Part. Nucl. Phys. 101, 96 (2018)
https://doi.org/10.1016/j.ppnp.2018.04.001
7 S. Burrello, M. Colonna, and H. Zheng, The symmetry energy of the nuclear EoS: A study of collective motion and low-energy reaction dynamics in semiclassical approaches, Front. Phys. 7, 53 (2019)
https://doi.org/10.3389/fphy.2019.00053
8 G. Giuliani, H. Zheng, and A. Bonasera, The many facets of the (non-relativistic) nuclear equation of state, Prog. Part. Nucl. Phys. 76, 116 (2014)
https://doi.org/10.1016/j.ppnp.2014.01.003
9 C. W. Ma and Y. G. Ma, Shannon information entropy in heavy-ion collisions, Prog. Part. Nucl. Phys. 99, 120 (2018)
https://doi.org/10.1016/j.ppnp.2018.01.002
10 A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Prog. Part. Nucl. Phys. 105, 139 (2019)
https://doi.org/10.1016/j.ppnp.2018.11.001
11 J. Xu, Transport approaches for the description of intermediate-energy heavy-ion collisions, Prog. Part. Nucl. Phys. 106, 312 (2019)
https://doi.org/10.1016/j.ppnp.2019.02.009
12 H. Gao, S. K. Ai, Z. J. Cao, B. Zhang, Z. Y. Zhu, A. Li, N. B. Zhang, and A. Bauswein, Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars, Front. Phys. 15(2), 24603 (2020)
https://doi.org/10.1007/s11467-019-0945-9
13 L. W. Chen, C. M. Ko, B. A. Li, C. Xu, and J. Xu, Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter, Eur. Phys. J. A 50(2), 29 (2014)
https://doi.org/10.1140/epja/i2014-14029-6
14 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Nuclear constraints on properties of neutron star crusts, Astrophys. J. 697(2), 1549 (2009)
https://doi.org/10.1088/0004-637X/697/2/1549
15 B. J. Cai and L. W. Chen, Nuclear matter fourth-order symmetry energy in the relativistic mean field models, Phys. Rev. C 85(2), 024302 (2012)
https://doi.org/10.1103/PhysRevC.85.024302
16 A. W. Steiner, High-density symmetry energy and direct Urca process, Phys. Rev. C 74(4), 045808 (2006)
https://doi.org/10.1103/PhysRevC.74.045808
17 J. Pu, Z. Zhang and L. W. Chen, Nuclear matter fourthorder symmetry energy in nonrelativistic mean-field models, Phys. Rev. C 96, 054311 (2017)
https://doi.org/10.1103/PhysRevC.96.054311
18 Z. W. Liu, Z. Qian, R. Y. Xing, J. R. Niu and B. Y. Sun, Nuclear fourth-order symmetry energy and its effects on neutron star properties in the relativistic Hartree–Fock theory, Phys. Rev. C 97, 2, 025801 (2018)
https://doi.org/10.1103/PhysRevC.97.025801
19 S. A. Bass, et al. (UrQMD-Collaboration), Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998)
https://doi.org/10.1016/S0146-6410(98)00058-1
20 M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, Relativistic hadron–hadron collisions in the ultra-relativistic quantum molecular dynamics model,J. Phys. G 25(9), 1859 (1999)
https://doi.org/10.1088/0954-3899/25/9/308
21 Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron, Phys. Rev. C 83(4), 044617 (2011)
https://doi.org/10.1103/PhysRevC.83.044617
22 Q. Li, G. Graf, and M. Bleicher, Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury–Brown–Twiss correlations in central Pb–Pb collisions at sNN=2.76⁢ ⁡TeV, Phys. Rev. C 85(3), 034908 (2012)
https://doi.org/10.1103/PhysRevC.85.034908
23 J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5–6), 233 (1991)
https://doi.org/10.1016/0370-1573(91)90094-3
24 C. Hartnack, R. K. Puri, J. Aichelin, J. Konopka, S. A. Bass, H. Stöcker, and W. Greiner, Modelling the manybody dynamics of heavy ion collisions: Present status and future perspective, Eur. Phys. J. A 1(2), 151 (1998)
https://doi.org/10.1007/s100500050045
25 Q. F. Li, Z. X. Li, S. Soff, M. Bleicher, and H. Stöcker, Probing the equation of state with pions, J. Phys. G 32(2), 151 (2006)
https://doi.org/10.1088/0954-3899/32/2/007
26 F. S. Zhang, C. Li, L. Zhu and P. Wen, Production cross sections for exotic nuclei with multinucleon transfer reactions, Front. Phys. 13(6), 132113 (2018)
https://doi.org/10.1007/s11467-018-0843-6
27 Y. Zhang and Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74(1), 014602 (2006)
https://doi.org/10.1103/PhysRevC.74.014602
28 Y. Zhang, Z. Li, and P. Danielewicz, In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75(3), 034615 (2007)
https://doi.org/10.1103/PhysRevC.75.034615
29 Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Collective flow of light particles in Au+Au collisions at intermediate energies, Phys. Rev. C 89(3), 034606 (2014)
https://doi.org/10.1103/PhysRevC.89.034606
30 Y. Wang, C. Guo, Q. Li, H. Zhang, Y. Leifels, and W. Trautmann, Constraining the high-density nuclear symmetry energy with the transverse-momentum-dependent elliptic flow, Phys. Rev. C 89, 044603 (2014)
https://doi.org/10.1103/PhysRevC.89.044603
31 Y. Du, Y. Wang, Q. Li, and L. Liu, The effect of Lorentzlike force on collective flows of K+ in Au+Au collisions at 1.5 GeV/nucleon, Sci. China Phys. Mech. Astron. 61, 062011 (2018)
https://doi.org/10.1007/s11433-017-9148-0
32 Y. Liu, Y. Wang, Q. Li, and L. Liu, Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon, Phys. Rev. C 97, 034602 (2018)
https://doi.org/10.1103/PhysRevC.97.034602
33 G. Q. Li and R. Machleidt, Microscopic calculation of in-medium nucleon–nucleon cross sections, Phys. Rev. C 48(4), 1702 (1993)
https://doi.org/10.1103/PhysRevC.48.1702
34 G. Q. Li and R. Machleidt, Microscopic calculation of in-medium proton–proton cross sections, Phys. Rev. C 49(1), 566 (1994)
https://doi.org/10.1103/PhysRevC.49.566
35 F. Sammarruca and P. Krastev, Effective nucleon– nucleon cross sections in symmetric and asymmetric nuclear matter, Phys. Rev. C 73(1), 014001 (2006)
https://doi.org/10.1103/PhysRevC.73.014001
36 H. J. Schulze, A. Schnell, G. Ropke, and U. Lombardo, Nucleon–nucleon cross sections in nuclear matter, Phys. Rev. C 55(6), 3006 (1997)
https://doi.org/10.1103/PhysRevC.55.3006
37 C. Fuchs, A. Faessler, and M. El-Shabshiry, Off-shell behavior of the in-medium nucleon–nucleon cross section, Phys. Rev. C 64(2), 024003 (2001)
https://doi.org/10.1103/PhysRevC.64.024003
38 H. F. Zhang, Z. H. Li, U. Lombardo, P. Y. Luo, F. Sammarruca, and W. Zuo, Nucleon–nucleon cross sections in dense nuclear matter, Phys. Rev. C 76(5), 054001 (2007)
https://doi.org/10.1103/PhysRevC.76.054001
39 H. F. Zhang, U. Lombardo, and W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections, Phys. Rev. C 82(1), 015805 (2010)
https://doi.org/10.1103/PhysRevC.82.015805
40 W. G. Love and M. A. Franey, Effective nucleon–nucleon interaction for scattering at intermediate energies, Phys. Rev. C 24, 1073 (1981)
https://doi.org/10.1103/PhysRevC.24.1073
41 T. Alm, G. Röpke, W. Bauer, F. Daffin, and M. Schmidt, The in-medium nucleon–nucleon cross section and BUU simulations of heavy-ion reactions, Nucl. Phys. A 587(4), 815 (1995)
https://doi.org/10.1016/0375-9474(95)00026-W
42 G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Z. Q. Yu, Medium effects on the NN inelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
https://doi.org/10.1016/0370-2693(94)90715-3
43 G. J. Mao, Z. X. Li, Y. Z. Zhuo, Y. Han, and Z. Yu, Study of in-medium NN inelastic cross section from relativistic Boltzmann-Uehling-Uhlenbeck approach, Phys. Rev. C 49(6), 3137 (1994)
https://doi.org/10.1103/PhysRevC.49.3137
44 Q. F. Li, Z. X. Li, and G. J. Mao, Isospin dependence of nucleon–nucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
https://doi.org/10.1103/PhysRevC.62.014606
45 Q. F. Li, Z. X. Li, and E. G. Zhao, Density and temperature dependence of nucleon–nucleon elastic cross section, Phys. Rev. C 69(1), 017601 (2004)
https://doi.org/10.1103/PhysRevC.69.017601
46 Q. F. Li and Z. X. Li, The isospin dependent nucleon– nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)
https://doi.org/10.1016/j.physletb.2017.09.013
47 G. D. Westfall, W. Bauer, D. Craig, M. Cronqvist, E. Gaultieri, S. Hannuschke, D. Klakow, T. Li, T. Reposeur, A. M. Vander Molen, W. K. Wilson, J. S. Winfield, J. Yee, S. J. Yennello, R. Lacey, A. Elmaani, J. Lauret, A. Nadasen, and E. Norbeck, Mass dependence of the disappearance of flow in nuclear collisions, Phys. Rev. Lett. 71(13), 1986 (1993)
https://doi.org/10.1103/PhysRevLett.71.1986
48 D. D. S. Coupland, W. G. Lynch, M. B. Tsang, P. Danielewicz, and Y. X. Zhang, Influence of transport variables on isospin transport ratios, Phys. Rev. C 84(5), 054603 (2011)
https://doi.org/10.1103/PhysRevC.84.054603
49 B. A. Li, P. Danielewicz, and W. G. Lynch, Probing the isospin dependence of the in-medium nucleon–nucleon cross sections with radioactive beams, Phys. Rev. C 71(5), 054603 (2005)
https://doi.org/10.1103/PhysRevC.71.054603
50 B. A. Li and L. W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)
https://doi.org/10.1103/PhysRevC.72.064611
51 Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 85(1), 014604 (2012)
https://doi.org/10.1103/PhysRevC.85.014604
52 W. M. Guo, G. C. Yong, Y. Wang, Q. Li, H. Zhang, and W. Zuo, Model dependence of isospin sensitive observables at high densities, Phys. Lett. B 726(1–3), 211 (2013)
https://doi.org/10.1016/j.physletb.2013.07.056
53 S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, Azimuthal correlations of pions in relativistic heavy-ion collisions at 1 GeV/nucleon, Phys. Rev. C 51(6), 3343 (1995)
https://doi.org/10.1103/PhysRevC.51.3343
54 Y. Wang, C. Guo, Q. Li, and H. Zhang, The effect of symmetry potential on the balance energy of light particles emitted from mass symmetric heavy-ion collisions with isotopes, isobars and isotones, Sci. China Phys. Mech. Astron. 55(12), 2407 (2012)
https://doi.org/10.1007/s11433-012-4922-3
55 C. Guo, Y. Wang, Q. Li, W. Trautmann, L. Liu, and L. Wu, Influence of the symmetry energy on the balance energy of the directed flow, Sci. China Phys. Mech. Astron. 55(2), 252 (2012)
https://doi.org/10.1007/s11433-011-4616-2
56 P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Effects of the in-medium nucleon–nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Phys. Rev. C 97(4), 044620 (2018)
https://doi.org/10.1103/PhysRevC.97.044620
57 P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain, Nucl. Sci. Tech. 29(12), 177 (2018)
https://doi.org/10.1007/s41365-018-0510-1
58 P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, and W. Trautmann, Symmetry energy from elliptic flow in 197Au+197Au, Phys. Lett. B 697(5), 471 (2011)
https://doi.org/10.1016/j.physletb.2011.02.033
59 Y. Zhang, Z. Li, C. Zhou, and M. B. Tsang, Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Phys. Rev. C 85(5), 051602 (2012)
https://doi.org/10.1103/PhysRevC.85.051602
60 K. Zbiri, A. L. Fèvre, J. Aichelin, J. Łukasik, W. Reisdorf, et al., Transition from participant to spectator fragmentation in Au+Au reactions between 60Aand 150AMeV, Phys. Rev. C 75(3), 034612 (2007)
https://doi.org/10.1103/PhysRevC.75.034612
61 Q. Li, Y. Wang, X. Wang, and C. Shen, Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner, Sci. China Phys. Mech. Astron. 59, 622001 (2016)
https://doi.org/10.1007/s11433-015-5768-2
62 W. Reisdorf and H. G. Ritter, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 47(1), 663 (1997)
https://doi.org/10.1146/annurev.nucl.47.1.663
63 W. Reisdorf, et al. (FOPI Collaboration), Systematics of azimuthal asymmetries in heavy ion collisions in the regime, Nucl. Phys. A 876, 1 (2012)
64 U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63(1), 123 (2013)
https://doi.org/10.1146/annurev-nucl-102212-170540
65 P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
https://doi.org/10.1126/science.1078070
66 J. Y. Ollitrault, Flow systematics from SIS to SPS energies, Nucl. Phys. A 638(1–2), 195c (1998)
https://doi.org/10.1016/S0375-9474(98)00413-8
67 A. Andronic, J. Lukasik, W. Reisdorf, and W. Trautmann, Systematics of stopping and flow in Au+Au collisions, Eur. Phys. J. A 30(1), 31 (2006)
https://doi.org/10.1140/epja/i2006-10101-2
68 A. Andronic, et al. (FOPI Collaboration), Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state, Phys. Lett. B 612(3–4), 173 (2005)
69 A. Le Fèvre, Y. Leifels, C. Hartnack, and J. Aichelin, Origin of elliptic flow and its dependence on the equation of state in heavy ion reactions at intermediate energies, Phys. Rev. C 98(3), 034901 (2018)
https://doi.org/10.1103/PhysRevC.98.034901
70 Y. M. Zheng, C. M. Ko, B. A. Li, and B. Zhang, Elliptic flow in heavy-ion collisions near the balance energy, Phys. Rev. Lett. 83(13), 2534 (1999)
https://doi.org/10.1103/PhysRevLett.83.2534
71 D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects, Phys. Rev. C 65(6), 064611 (2002)
https://doi.org/10.1103/PhysRevC.65.064611
72 T. Gaitanos, C. Fuchs, and H. H. Wolter, Nuclear stopping and flow in heavy-ion collisions and the in-medium NN cross section, Phys. Lett. B 609(3–4), 241 (2005)
https://doi.org/10.1016/j.physletb.2005.01.069
73 B. A. Li and L. W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)
https://doi.org/10.1103/PhysRevC.72.064611
74 M. Kaur and S. Gautam, Influence of the constant and density-dependent scaling of the scattering cross-section on reaction dynamics, J. Phys. G 43, 2, 025103 (2016)
https://doi.org/10.1088/0954-3899/43/2/025103
75 B. Barker and P. Danielewicz, Shear viscosity from nuclear stopping, Phys. Rev. C 99, 034607 (2019)
https://doi.org/10.1103/PhysRevC.99.034607
76 Z. Basrak, P. Eudes, and V. de la Mota, Aspects of the momentum dependence of the equation of state and of the residual NN cross section, and their effects on nuclear stopping, Phys. Rev. C 93, 054609 (2016)
https://doi.org/10.1103/PhysRevC.93.054609
77 G. Lehaut, et al. (INDRA and ALADIN Collaborations), Study of nuclear stopping in central collisions at intermediate energies, Phys. Rev. Lett. 104(23), 232701 (2010)
https://doi.org/10.1103/PhysRevLett.104.232701
78 W. Reisdorf, et al. (FOPI Collaboration), Nuclear stopping from 0.09Ato 1.93AGeV and its correlation to flow, Phys. Rev. Lett. 92(23), 232301 (2004)
79 W. Reisdorf, et al. (FOPI Collaboration), Systematics of central heavy ion collisions in the regime,Nucl. Phys. A 848(3–4), 366 (2010)
80 P. Li, Y. Wang, Q. Li, J. Wang, and H. Zhang, Effects of impact parameter filters on observables in heavy-ion collisions at INDRA energies, J. Phys. G 47(3), 035108 (2020)
https://doi.org/10.1088/1361-6471/ab6627
81 Y. Wang, C. Guo, Q. Li, Z. Li, J. Su, and H. Zhang, Influence of differential elastic nucleon–nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 94, 024608 (2016)
https://doi.org/10.1103/PhysRevC.94.024608
82 J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316 (2014)
https://doi.org/10.1103/PhysRevC.89.044316
83 E. Khan and J. Margueron, Determination of the density dependence of the nuclear incompressibility, Phys. Rev. C 88, 034319 (2013)
https://doi.org/10.1103/PhysRevC.88.034319
84 E. Khan, J. Margueron, and I. Vidaña, Constraining the nuclear equation of state at subsaturation densities, Phys. Rev. Lett. 109(9), 092501 (2012)
https://doi.org/10.1103/PhysRevLett.109.092501
85 J. J. Molitoris, D. Hahn, and H. Stöcker, Circumstantial evidence for a stiff nuclear equation of state, Nucl. Phys. A 447, 13 (1986)
https://doi.org/10.1016/0375-9474(86)90595-6
86 J. J. Molitoris and H. Stöcker, Further evidence for a stiff nuclear equation of state from a transverse-momentum analysis of Ar(1800 MeV/nucleon) + KCl, Phys. Rev. C 32(1), 346 (1985)
https://doi.org/10.1103/PhysRevC.32.346
87 H. Kruse, B. V. Jacak, and H. Stöcker, Microscopic theory of pion production and Sidewards flow in heavy-ion collisions, Phys. Rev. Lett. 54(4), 289 (1985)
https://doi.org/10.1103/PhysRevLett.54.289
88 J. Aichelin and C. M. Ko, Subthreshold Kaon production as a probe of the nuclear equation of state, Phys. Rev. Lett. 55(24), 2661 (1985)
https://doi.org/10.1103/PhysRevLett.55.2661
89 H. Stöcker and W. Greiner, High energy heavy ion collisions — probing the equation of state of highly excited hardronic matter, Phys. Rep. 137(5–6), 277 (1986)
https://doi.org/10.1016/0370-1573(86)90131-6
90 W. Cassing, V. Metag, U. Mosel, and K. Niita, Production of energetic particles in heavy-ion collisions, Phys. Rep. 188(6), 363 (1990)
https://doi.org/10.1016/0370-1573(90)90164-W
91 C. Sturm, I. Böttcher, M. Dbowski, A. Förster, E. Grosse, P. Koczoń, B. Kohlmeyer, F. Laue, M. Mang, L. Naumann, H. Oeschler, F. Pühlhofer, E. Schwab, P. Senger, Y. Shin, J. Speer, H. Ströbele, G. Surówka, F. Uhlig, A. Wagner, and W. Waluś, Evidence for a soft nuclear equation-of-state from Kaon production in heavy-ion collisions, Phys. Rev. Lett. 86(1), 39 (2001)
https://doi.org/10.1103/PhysRevLett.86.39
92 C. Fuchs, A. Faessler, E. Zabrodin, and Y. M. Zheng, Probing the nuclear equation of state by K+ production in heavy-ion collisions, Phys. Rev. Lett. 86(10), 1974 (2001)
https://doi.org/10.1103/PhysRevLett.86.1974
93 C. Hartnack, H. Oeschler, and J. Aichelin, Hadronic matter is soft, Phys. Rev. Lett. 96(1), 012302 (2006)
https://doi.org/10.1103/PhysRevLett.96.012302
94 Z. Q. Feng, Constraining the high-density behavior of the nuclear equation of state from strangeness production in heavy-ion collisions, Phys. Rev. C 83(6), 067604 (2011)
https://doi.org/10.1103/PhysRevC.83.067604
95 A. Le Fèvre, Y. Leifels, W. Reisdorf, J. Aichelin, and C. Hartnack, Constraining the nuclear matter equation of state around twice saturation density, Nucl. Phys. A 945, 112 (2016)
https://doi.org/10.1016/j.nuclphysa.2015.09.015
96 J. Xu, L.-W. Chen, M. Y. B. Tsang, et al., Understanding transport simulations of heavy-ion collisions at 100Aand 400AMeV: Comparison of heavy-ion transport codes under controlled conditions, Phys. Rev. C 93, 044609 (2016)
https://doi.org/10.1103/PhysRevC.93.044609
97 M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
https://doi.org/10.1103/PhysRevC.85.035201
98 Y. Wang, C. Guo, Q. Li, A. Le Fèvre, Y. Leifels, and W. Trautmann, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0AGeV, Phys. Lett. B 778, 207 (2018)
https://doi.org/10.1016/j.physletb.2018.01.035
99 P. Russotto, et al., Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density, Phys. Rev. C 94, 034608 (2016)
100 L. W. Chen, Higher order bulk characteristic parameters of asymmetric nuclear matter, Sci. China Phys. Mech. Astron. 54(S1), 124 (2011)
https://doi.org/10.1007/s11433-011-4415-9
101 L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Phys. Rev. C 80(1), 014322 (2009)
https://doi.org/10.1103/PhysRevC.80.014322
102 B. A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions, Phys. Rev. Lett. 88(19), 192701 (2002)
https://doi.org/10.1103/PhysRevLett.88.192701
103 Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102(6), 062502 (2009)
https://doi.org/10.1103/PhysRevLett.102.062502
104 Z. Q. Feng and G. M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Phys. Lett. B 683(2–3), 140 (2010)
https://doi.org/10.1016/j.physletb.2009.12.006
105 N. B. Zhang and B. A. Li, Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves, Eur. Phys. J. A 55(3), 39 (2019)
https://doi.org/10.1140/epja/i2019-12700-0
106 W. J. Xie and B. A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, Astrophys. J. 883(2), 174 (2019)
https://doi.org/10.3847/1538-4357/ab3f37
107 Y. Zhou, L. Chen, and Z. Zhang, Equation of state of dense matter in the multimessenger era, Phys. Rev. D 99(12), 121301 (2019)
https://doi.org/10.1103/PhysRevD.99.121301
108 Y. Wang, C. Guo, Q. Li, and H. Zhang, 3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities, Eur. Phys. J. A 51, 37 (2015)
https://doi.org/10.1140/epja/i2015-15037-8
109 M. Di Toro, V. Baran, M. Colonna, and V. Greco, Probing the nuclear symmetry energy with heavy-ion collisions, J. Phys. G 37(8), 083101 (2010)
https://doi.org/10.1088/0954-3899/37/8/083101
110 M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Constraints on the density dependence of the symmetry energy, Phys. Rev. Lett. 102, 122701 (2009)
https://doi.org/10.1103/PhysRevLett.102.122701
111 M. B. Tsang, et al., Constraints on the density dependence of the symmetry energy, Int. J. Mod. Phys. E 19, 1631 (2010)
112 X. Lopez, et al. (FOPI Collaboration), Isospin dependence of relative yields of K+ and K0 mesons at 1.528AGeV, Phys. Rev. C 75, 011901(R) (2007)
113 M. D. Cozma, Neutron–proton elliptic flow difference as a probe for the high density dependence of the symmetry energy, Phys. Lett. B 700(2), 139 (2011)
https://doi.org/10.1016/j.physletb.2011.05.002
114 M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto, Toward a model-independent constraint of the high-density dependence of the symmetry energy, Phys. Rev. C 88(4), 044912 (2013)
https://doi.org/10.1103/PhysRevC.88.044912
115 S. Kumar, Y. G. Ma, G. Q. Zhang, and C. L. Zhou, Sensitivity of neutron to proton ratio toward the high density behavior of the symmetry energy in heavy-ion collisions, Phys. Rev. C 85(2), 024620 (2012)
https://doi.org/10.1103/PhysRevC.85.024620
116 L. Lü, H. Yi, Z. Xiao, M. Shao, S. Zhang, G. Xiao, and N. Xu, Conceptual design of the HIRFL-CSR externaltarget experiment, Sci. China Phys. Mech. Astron. 60, 1, 012021 (2017)
https://doi.org/10.1007/s11433-016-0342-x
117 P. Russotto, M. D. Cozma, A. Fèvre, Y. Leifels, R. Lemmon, Q. Li, J. Lukasik, and W. Trautmann, Flow probe of symmetry energy in relativistic heavy-ion reactions, Eur. Phys. J. A 50(2), 38 (2014)
https://doi.org/10.1140/epja/i2014-14038-5
118 W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Symmetry energy and pion production in the Boltzmann-Langevin approach, Phys. Lett. B 718(4–5), 1510 (2013)
https://doi.org/10.1016/j.physletb.2012.12.021
119 Q. Li, Z. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions, J. Phys. G 31(11), 1359 (2005)
https://doi.org/10.1088/0954-3899/31/11/016
120 Q. Li, Z. Li, E. Zhao, and R. K. Gupta, Σ−/Σ+ ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Phys. Rev. C 71(5), 054907 (2005)
https://doi.org/10.1103/PhysRevC.71.054907
121 S. Gautam, A. D. Sood, R. K. Puri, and J. Aichelin, Isospin effects in the disappearance of flow as a function of colliding geometry, Phys. Rev. C 83(1), 014603 (2011)
https://doi.org/10.1103/PhysRevC.83.014603
122 M. B. Tsang, et al. (SRIT Collaboration), Pion production in rare-isotope collisions, Phys. Rev. C 95, 044614 (2017)
https://doi.org/10.1103/PhysRevC.95.044614
123 B. A. Li, L. W. Chen, F. J. Fattoyev, W. G. Newton, and C. Xu, Probing nuclear symmetry energy and its imprints on properties of nuclei, nuclear reactions, neutron stars and gravitational waves, J. Phys. Conf. Ser. 413, 012021 (2013)
https://doi.org/10.1088/1742-6596/413/1/012021
124 L. W. Chen, Recent progress on the determination of the symmetry energy, arXiv: 1212.0284 [nucl-th] (2012)
125 H. Wolter, Proceedings of Science (Bormio2012), 059 (2012)
126 B. A. Li and X. Han, Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density, Phys. Lett. B 727(1–3), 276 (2013)
https://doi.org/10.1016/j.physletb.2013.10.006
127 P. Danielewicz and J. Lee, Symmetry energy II: Isobaric analog states, Nucl. Phys. A 922, 1 (2014)
https://doi.org/10.1016/j.nuclphysa.2013.11.005
128 X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G. Colò, L. G. Cao, N. Paar, and D. Vretenar, Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness, Phys. Rev. C 87(3), 034301 (2013)
https://doi.org/10.1103/PhysRevC.87.034301
129 B. A. Brown, Constraints on the skyrme equations of state from properties of doubly magic nuclei, Phys. Rev. Lett. 111(23), 232502 (2013)
https://doi.org/10.1103/PhysRevLett.111.232502
130 Z. Zhang and L. W. Chen, Constraining the symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness, Phys. Lett. B 726(1–3), 234 (2013)
https://doi.org/10.1016/j.physletb.2013.08.002
131 N. Wang, M. Liu, L. Ou, and Y. Zhang, Properties of nuclear matter from macroscopic–microscopic mass formulas, Phys. Lett. B 751, 553 (2015)
https://doi.org/10.1016/j.physletb.2015.11.006
132 X. Fan, J. Dong, and W. Zuo, Density-dependent symmetry energy at subsaturation densities from nuclear mass differences, Phys. Rev. C 89(1), 017305 (2014)
https://doi.org/10.1103/PhysRevC.89.017305
133 L. W. Chen, C. M. Ko, and B. A. Li, Light clusters production as a probe to nuclear symmetry energy, Phys. Rev. C 68(1), 017601 (2003)
https://doi.org/10.1103/PhysRevC.68.017601
134 L. W. Chen, C. M. Ko, and B. A. Li, Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei, Nucl. Phys. A 729(2–4), 809 (2003)
https://doi.org/10.1016/j.nuclphysa.2003.09.010
135 L. W. Chen, C. M. Ko, and B. A. Li, Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions, Phys. Rev. C 69(5), 054606 (2004)
https://doi.org/10.1103/PhysRevC.69.054606
136 Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential at low and high densities, Phys. Rev. C. 72(3), 034613 (2005)
https://doi.org/10.1103/PhysRevC.72.034613
137 Y. Zhang and Z. Li, Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions, Phys. Rev. C 71(2), 024604 (2005)
https://doi.org/10.1103/PhysRevC.71.024604
138 G. C. Yong, B. A. Li, L. W. Chen, and X. C. Zhang, Triton-3He relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities, Phys. Rev. C 80(4), 044608 (2009)
https://doi.org/10.1103/PhysRevC.80.044608
139 B. A. Li, Neutron–proton differential flow as a probe of isospin-dependence of the nuclear equation of state, Phys. Rev. Lett. 85(20), 4221 (2000)
https://doi.org/10.1103/PhysRevLett.85.4221
140 V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, and H. H. Wolter, Relativistic effects in the search for high density symmetry energy, Phys. Lett. B 562(3–4), 215 (2003)
https://doi.org/10.1016/S0370-2693(03)00581-1
141 W. Trautmann, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, P. Russotto, and P. Wu, Differential neutron–proton squeeze– out, Prog. Part. Nucl. Phys. 62(2), 425 (2009)
https://doi.org/10.1016/j.ppnp.2008.12.012
142 W. Trautmann, et al., The symmetry energy in nuclear reactions, Int. J. Mod. Phys. E 19, 1653 (2010)
143 M. D. Cozma, Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data, Eur. Phys. J. A 54, 40 (2018)
https://doi.org/10.1140/epja/i2018-12470-1
144 Y. Wang, Q. Li, A. Le Fèvre, and Y. Leifels, Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Phys. Lett. B 802, 135249 (2020)
https://doi.org/10.1016/j.physletb.2020.135249
145 Y. X. Zhang, et al., Comparison of heavy-ion transport simulations: Collision integral in a box, Phys. Rev. C 97, 034625 (2018)
https://doi.org/10.1103/PhysRevC.97.034625
146 A. Ono, et al., Comparison of heavy-ion transport simulations: Collision integral with pions and Δ resonances in a box, Phys. Rev. C 100, 044617 (2019)
https://doi.org/10.1103/PhysRevC.100.044617
147 Y. F. Guo and G. C. Yong, High ptsqueezed-out n/p ratio as a probe of Ksym of the symmetry energy, Phys. Rev. C 100, 014617 (2019)
https://doi.org/10.1103/PhysRevC.100.014617
148 Y. F. Guo and G. C. Yong, Effects of curvature of the symmetry energy in Sn+Sn reactions at 270 MeV/nucleon, arXiv: 1909.13566 [nucl-th] (2019)
149 B. A. Li, Symmetry potential of the Δ(1232) resonance and its effects on the π−/π+ ratio in heavy-ion collisions near the pion-production threshold, Phys. Rev. C 92, 034603 (2015)
https://doi.org/10.1103/PhysRevC.92.034603
150 M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average pTratios of charged pions, Phys. Rev. C 95, 014601 (2017)
https://doi.org/10.1103/PhysRevC.95.014601
151 Z. Zhang and C. M. Ko, Medium effects on pion production in heavy ion collisions, Phys. Rev. C 95, 064604 (2017)
https://doi.org/10.1103/PhysRevC.95.064604
152 W. M. Guo, G. C. Yong, H. Liu, and W. Zuo, Effects of pion potential and nuclear symmetry energy on the π−/π+ ratio in heavy-ion collisions at beam energies around the pion production threshold, Phys. Rev. C 91, 054616 (2015)
https://doi.org/10.1103/PhysRevC.91.054616
153 W. M. Guo, G. C. Yong, and W. Zuo, Effect of Δ potential on the π−/π+ ratio in heavy-ion collisions at intermediate energies, Phys. Rev. C 92, 054619 (2015)
https://doi.org/10.1103/PhysRevC.92.054619
154 G. C. Yong, Modeling pion production in heavy-ion collisions at intermediate energies, Phys. Rev. C 96, 044605 (2017)
https://doi.org/10.1103/PhysRevC.96.044605
155 T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91, 014901 (2015)
https://doi.org/10.1103/PhysRevC.91.014901
156 Q. Li and Z. Li, The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)
https://doi.org/10.1016/j.physletb.2017.09.013
157 Q. Li and Z. Li, The density- and isospin-dependent Δ- formation cross section and its decay width, Sci. China Phys. Mech. Astron. 62, 972011 (2019)
https://doi.org/10.1007/s11433-018-9336-y
158 Y. Cui, Y. Zhang, and Z. Li, In-medium NN→NΔ cross section and its dependence on effective Lagrange parameters in isospin-asymmetric nuclear matter, Chin. Phys. C 43, 024105 (2019)
https://doi.org/10.1088/1674-1137/43/2/024105
159 Y. Cui, Y. Zhang, and Z. Li, The Δ mass dependence of the Mmatrix and its influence on the NΔ→NN cross-sections, Chin. Phys. C 44, 024106 (2020)
https://doi.org/10.1088/1674-1137/44/2/024106
160 Y. Cui, Y. Zhang, and Z. Li, Effect of energy conservation on the in-medium NN ! NΔ cross section in isospinasymmetric nuclear matter, Phys. Rev. C 98, 054605 (2018)
https://doi.org/10.1103/PhysRevC.98.054605
161 W. M. Guo, G. C. Yong, and W. Zuo, Effects of nuclear symmetry energy and in-medium NN cross section in heavy-ion collisions at beam energies below the pion production threshold, Phys. Rev. C 90, 044605 (2014)
https://doi.org/10.1103/PhysRevC.90.044605
162 Y. Gao, G. C. Yong, L. Zhang, and W. Zuo, Influence of the nuclear symmetry energy on the collective flows of charged pions, Phys. Rev. C 97, 014609 (2018)
https://doi.org/10.1103/PhysRevC.97.014609
163 S. J. Cheng, G. C. Yong, and D. H. Wen, Effects of the symmetry energy in the 132Sn+124 Sn reaction at 300 MeV/nucleon, Phys. Rev. C 94, 064621 (2016)
https://doi.org/10.1103/PhysRevC.94.064621
164 B. A. Li and L. W. Chen, Neutron–proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions, Mod. Phys. Lett. A 30, 1530010 (2015)
https://doi.org/10.1142/S0217732315300104
165 W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Neutron–proton effective mass splitting in a Boltzmann–Langevin approach, Phys. Rev. C 88, 061601(R) (2013)
https://doi.org/10.1103/PhysRevC.88.061601
166 W. J. Xie, Z. Q. Feng, J. Su, and F. S. Zhang, Probing the momentum-dependent symmetry potential via nuclear collective flows, Phys. Rev. C 91, 054609 (2015)
https://doi.org/10.1103/PhysRevC.91.054609
167 Z. Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions, Phys. Rev. C 84(2), 024610 (2011)
https://doi.org/10.1103/PhysRevC.84.024610
168 Z. Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions, Nucl. Sci. Tech. 29, 40 (2018)
https://doi.org/10.1007/s41365-018-0379-z
169 Z. Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions, Nucl. Phys. A 878, 3 (2012)
https://doi.org/10.1016/j.nuclphysa.2012.01.014
170 V. Giordano, M. Colonna, M. Di Toro, V. Greco, and J. Rizzo, Isospin emission and flow at high baryon density: A test of the symmetry potential, Phys. Rev. C 81(4), 044611 (2010)
https://doi.org/10.1103/PhysRevC.81.044611
171 L. Y. Tong, P. C. Li, F. P. Li, Y. J. Wang, Q. F. Li, and F. X. Liu, Effects of the nucleon effective mass splitting and density-dependent symmetry energy on the elliptic flow in heavy ion collisions at Elab=0.09–1.5 GeV/nucleon, Chin. Phys. C (2020) (accepted)
172 O. Hen, B. A. Li, W. J. Guo, L. B. Weinstein, and E. Piasetzky, Symmetry energy of nucleonic matter with tensor correlations, Phys. Rev. C 91, 025803 (2015)
https://doi.org/10.1103/PhysRevC.91.025803
173 B. A. Li, W. J. Guo, and Z. Shi, Effects of the kinetic symmetry energy reduced by short-range correlations in heavy-ion collisions at intermediate energies, Phys. Rev. C 91, 044601 (2015)
https://doi.org/10.1103/PhysRevC.91.044601
174 H. L. Liu, G. C. Yong and D. H. Wen, Probing the momentum dependence of the symmetry potential by the free n/p ratio of pre-equilibrium emission, Phys. Rev. C 91, 024604 (2015)
https://doi.org/10.1103/PhysRevC.91.024604
175 G. C. Yong, Constraining nucleon high momentum in nuclei, Phys. Lett. B 765, 104 (2017)
https://doi.org/10.1016/j.physletb.2016.12.013
176 G. C. Yong and B. A. Li, Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies, Phys. Rev. C 96, 064614 (2017)
https://doi.org/10.1103/PhysRevC.96.064614
177 Z. X. Yang, X. H. Fan, G. C. Yong, and W. Zuo, Effects of the initialization of nucleon momentum in heavy-ion collisions at medium energies, Phys. Rev. C 98, 014623 (2018)
https://doi.org/10.1103/PhysRevC.98.014623
178 G. C. Yong, Probing proton transition momentum in neutron-rich matter, Phys. Lett. B 776, 447 (2018)
https://doi.org/10.1016/j.physletb.2017.11.075
179 Z. X. Yang, X. L. Shang, G. C. Yong, W. Zuo, and Y. Gao, Nucleon momentum distributions in asymmetric nuclear matter, Phys. Rev. C 100, 054325 (2019)
https://doi.org/10.1103/PhysRevC.100.054325
180 B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Towards understanding astrophysical effects of nuclear symmetry energy, Eur. Phys. J. A 55, 117 (2019)
https://doi.org/10.1140/epja/i2019-12780-8
181 M. B. Tsang, W. G. Lynch, P. Danielewicz, and C. Y. Tsang, Symmetry energy constraints from GW170817 and laboratory experiments, Phys. Lett. B 795, 533 (2019)
https://doi.org/10.1016/j.physletb.2019.06.059
182 L. Baiotti, Gravitational waves from neutron star mergers and their relation to the nuclear equation of state, Prog. Part. Nucl. Phys. 109, 103714 (2019)
https://doi.org/10.1016/j.ppnp.2019.103714
[1] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[2] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[3] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
[4] CHEN Lie-wen, KO Che Ming, LI Bao-an, YONG Gao-chan. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei[J]. Front. Phys. , 2007, 2(3): 327-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed