|
|
|
Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature |
Zhi-Xin Yang1, Liang Wang1, Yu-Mu Liu2, Dong-Yang Wang3, Cheng-Hua Bai3, Shou Zhang1( ), Hong-Fu Wang1( ) |
1. Department of Physics, College of Science, Yanbian University, Yanji 133002, China 2. Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China 3. School of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
|
|
Abstract We propose to realize the ground state cooling of magnomechanical resonator in a parity–time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.
|
| Keywords
ground state cooling
magnomechanical resonator
PT-symmetry
|
|
Corresponding Author(s):
Shou Zhang,Hong-Fu Wang
|
|
Just Accepted Date: 08 September 2020
Issue Date: 10 October 2020
|
|
| 1 |
G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2(2), 81 (2006)
https://doi.org/10.1038/nphys227
|
| 2 |
P. Pei, F. Y. Zhang, C. Li, and H. S. Song, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A 84(4), 042339 (2011)
https://doi.org/10.1103/PhysRevA.84.042339
|
| 3 |
O. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82(10), 104413 (2010)
https://doi.org/10.1103/PhysRevB.82.104413
|
| 4 |
A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin-orbit coupled photons, Phys. Rev. Lett. 116(22), 223601 (2016)
https://doi.org/10.1103/PhysRevLett.116.223601
|
| 5 |
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113(15), 156401 (2014)
https://doi.org/10.1103/PhysRevLett.113.156401
|
| 6 |
J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant Brillouin light scattering in magneto-optical cavities, Phys. Rev. Lett. 117(13), 133602 (2016)
https://doi.org/10.1103/PhysRevLett.117.133602
|
| 7 |
A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120(13), 133602 (2018)
https://doi.org/10.1103/PhysRevLett.120.133602
|
| 8 |
S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Optical cooling of magnons, Phys. Rev. Lett. 121(8), 087205 (2018)
https://doi.org/10.1103/PhysRevLett.121.087205
|
| 9 |
O. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104(7), 077202 (2010)
https://doi.org/10.1103/PhysRevLett.104.077202
|
| 10 |
Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94(22), 224410 (2016)
https://doi.org/10.1103/PhysRevB.94.224410
|
| 11 |
H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111(12), 127003 (2013)
https://doi.org/10.1103/PhysRevLett.111.127003
|
| 12 |
J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93(14), 144420 (2016)
https://doi.org/10.1103/PhysRevB.93.144420
|
| 13 |
L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems, Phys. Rev. Lett. 114(22), 227201 (2015)
https://doi.org/10.1103/PhysRevLett.114.227201
|
| 14 |
Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113(8), 083603 (2014)
https://doi.org/10.1103/PhysRevLett.113.083603
|
| 15 |
C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73(2), 155 (1948)
https://doi.org/10.1103/PhysRev.73.155
|
| 16 |
C. Kittel, Interaction of spin waves and ultrasonic waves in ferromagnetic crystals, Phys. Rev. 110(4), 836 (1958)
https://doi.org/10.1103/PhysRev.110.836
|
| 17 |
D. Zhang, X. M. Wang, T. F. Li, X.Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-irongarnet sphere, npj Quantum Inf. 1, 15014 (2015)
https://doi.org/10.1038/npjqi.2015.14
|
| 18 |
Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120(5), 057202 (2018)
https://doi.org/10.1103/PhysRevLett.120.057202
|
| 19 |
G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99(5), 054404 (2019)
https://doi.org/10.1103/PhysRevB.99.054404
|
| 20 |
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
https://doi.org/10.1364/OE.26.020248
|
| 21 |
C. Kong, B. Wang, Z. X. Liu, H. Xiong, and Y. Wu, Magnetically controllable slow light based on magnetostrictive forces, Opt. Express 27(4), 5544 (2019)
https://doi.org/10.1364/OE.27.005544
|
| 22 |
M. Goryachev, S. Watt, J. Bourhill, M. Kostylev, and M. E. Tobar, Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures, Phys. Rev. B 97(15), 155129 (2018)
https://doi.org/10.1103/PhysRevB.97.155129
|
| 23 |
M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 2(5), 054002 (2014)
https://doi.org/10.1103/PhysRevApplied.2.054002
|
| 24 |
S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system, Phys. Rev. A 99(4), 043803 (2019)
https://doi.org/10.1103/PhysRevA.99.043803
|
| 25 |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
https://doi.org/10.1038/nature02851
|
| 26 |
C. Roy, and S. Hughes, Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects, Phys. Rev. Lett. 106(24), 247403 (2011)
https://doi.org/10.1103/PhysRevLett.106.247403
|
| 27 |
E. H. Turner, Interaction of phonons and spin waves in yttrium iron garnet, Phys. Rev. Lett. 5(3), 100 (1960)
https://doi.org/10.1103/PhysRevLett.5.100
|
| 28 |
Y. L. Liu and Y. X. Liu, Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity, Phys. Rev. A 96(2), 023812 (2017)
https://doi.org/10.1103/PhysRevA.96.023812
|
| 29 |
Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array, Phys. Rev. A 96(4), 043810 (2017)
https://doi.org/10.1103/PhysRevA.96.043810
|
| 30 |
Y. Y. Fu, Y. Fei, D. X. Dong, and Y. W. Liu, Photonic spin Hall effect in PT symmetric metamaterials, Front. Phys. 14(6), 62601 (2019)
https://doi.org/10.1007/s11467-019-0938-8
|
| 31 |
Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
https://doi.org/10.1103/PhysRevLett.106.093902
|
| 32 |
H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
https://doi.org/10.1103/PhysRevLett.113.053604
|
| 33 |
L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Magnon blockade in a PT-symmetric-like cavity magnomechanical system, Ann. Phys. 532(7), 2000028 (2020)
https://doi.org/10.1002/andp.202000028
|
| 34 |
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
https://doi.org/10.1364/OE.26.020248
|
| 35 |
K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
https://doi.org/10.1103/PhysRevX.6.021007
|
| 36 |
Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT-phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)
https://doi.org/10.1103/PhysRevLett.112.143903
|
| 37 |
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
https://doi.org/10.1038/nphys2927
|
| 38 |
Z. P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
https://doi.org/10.1103/PhysRevLett.117.110802
|
| 39 |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
|
| 40 |
J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
https://doi.org/10.1038/nature10261
|
| 41 |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
|
| 42 |
Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
https://doi.org/10.1103/PhysRevA.91.033818
|
| 43 |
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6, 237250 (2011)
https://doi.org/10.1007/s11467-011-0164-5
|
| 44 |
B. Y. Zhou and G. X. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot–cavity system, Phys. Rev. A 94(3), 033809 (2016)
https://doi.org/10.1103/PhysRevA.94.033809
|
| 45 |
M. S. Ding, L. Zheng, and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020)
https://doi.org/10.1364/JOSAB.380755
|
| 46 |
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2(3), e1501286 (2016)
https://doi.org/10.1126/sciadv.1501286
|
| 47 |
J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-photonphonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121(20), 203601 (2018)
https://doi.org/10.1103/PhysRevLett.121.203601
|
| 48 |
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
https://doi.org/10.1103/PhysRev.58.1098
|
| 49 |
R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2726 (2000)
https://doi.org/10.1103/PhysRevLett.84.2726
|
| 50 |
B. He, S. B. Yan, J. Wang, and M. Xiao, Quantum noise effects with Kerr-nonlinearity enhancement in coupled gainloss waveguides, Phys. Rev. A 91(5), 053832 (2015)
https://doi.org/10.1103/PhysRevA.91.053832
|
| 51 |
B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-time symmetric structure with coupled gainloss microcavities, Phys. Rev. A 91(3), 033830 (2015)
https://doi.org/10.1103/PhysRevA.91.033830
|
| 52 |
G. S. Agarwal and K. Qu, Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems, Phys. Rev. A 85, 031802(R) (2012)
https://doi.org/10.1103/PhysRevA.85.031802
|
| 53 |
B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
https://doi.org/10.1103/PhysRevA.94.031802
|
| 54 |
K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, PT-symmetry breaking in the steady state of microscopic gain–loss systems, New J. Phys. 18(9), 095003 (2016)
https://doi.org/10.1088/1367-2630/18/9/095003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|