Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (5) : 52504    https://doi.org/10.1007/s11467-020-0996-y
RESEARCH ARTICLE
Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature
Zhi-Xin Yang1, Liang Wang1, Yu-Mu Liu2, Dong-Yang Wang3, Cheng-Hua Bai3, Shou Zhang1(), Hong-Fu Wang1()
1. Department of Physics, College of Science, Yanbian University, Yanji 133002, China
2. Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
3. School of Physics, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(1826 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose to realize the ground state cooling of magnomechanical resonator in a parity–time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.

Keywords ground state cooling      magnomechanical resonator      PT-symmetry     
Corresponding Author(s): Shou Zhang,Hong-Fu Wang   
Just Accepted Date: 08 September 2020   Issue Date: 10 October 2020
 Cite this article:   
Zhi-Xin Yang,Liang Wang,Yu-Mu Liu, et al. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature[J]. Front. Phys. , 2020, 15(5): 52504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0996-y
https://academic.hep.com.cn/fop/EN/Y2020/V15/I5/52504
1 G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2(2), 81 (2006)
https://doi.org/10.1038/nphys227
2 P. Pei, F. Y. Zhang, C. Li, and H. S. Song, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A 84(4), 042339 (2011)
https://doi.org/10.1103/PhysRevA.84.042339
3 O. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82(10), 104413 (2010)
https://doi.org/10.1103/PhysRevB.82.104413
4 A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin-orbit coupled photons, Phys. Rev. Lett. 116(22), 223601 (2016)
https://doi.org/10.1103/PhysRevLett.116.223601
5 X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113(15), 156401 (2014)
https://doi.org/10.1103/PhysRevLett.113.156401
6 J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant Brillouin light scattering in magneto-optical cavities, Phys. Rev. Lett. 117(13), 133602 (2016)
https://doi.org/10.1103/PhysRevLett.117.133602
7 A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120(13), 133602 (2018)
https://doi.org/10.1103/PhysRevLett.120.133602
8 S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Optical cooling of magnons, Phys. Rev. Lett. 121(8), 087205 (2018)
https://doi.org/10.1103/PhysRevLett.121.087205
9 O. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104(7), 077202 (2010)
https://doi.org/10.1103/PhysRevLett.104.077202
10 Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94(22), 224410 (2016)
https://doi.org/10.1103/PhysRevB.94.224410
11 H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111(12), 127003 (2013)
https://doi.org/10.1103/PhysRevLett.111.127003
12 J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93(14), 144420 (2016)
https://doi.org/10.1103/PhysRevB.93.144420
13 L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems, Phys. Rev. Lett. 114(22), 227201 (2015)
https://doi.org/10.1103/PhysRevLett.114.227201
14 Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113(8), 083603 (2014)
https://doi.org/10.1103/PhysRevLett.113.083603
15 C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73(2), 155 (1948)
https://doi.org/10.1103/PhysRev.73.155
16 C. Kittel, Interaction of spin waves and ultrasonic waves in ferromagnetic crystals, Phys. Rev. 110(4), 836 (1958)
https://doi.org/10.1103/PhysRev.110.836
17 D. Zhang, X. M. Wang, T. F. Li, X.Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-irongarnet sphere, npj Quantum Inf. 1, 15014 (2015)
https://doi.org/10.1038/npjqi.2015.14
18 Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120(5), 057202 (2018)
https://doi.org/10.1103/PhysRevLett.120.057202
19 G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99(5), 054404 (2019)
https://doi.org/10.1103/PhysRevB.99.054404
20 B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
https://doi.org/10.1364/OE.26.020248
21 C. Kong, B. Wang, Z. X. Liu, H. Xiong, and Y. Wu, Magnetically controllable slow light based on magnetostrictive forces, Opt. Express 27(4), 5544 (2019)
https://doi.org/10.1364/OE.27.005544
22 M. Goryachev, S. Watt, J. Bourhill, M. Kostylev, and M. E. Tobar, Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures, Phys. Rev. B 97(15), 155129 (2018)
https://doi.org/10.1103/PhysRevB.97.155129
23 M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 2(5), 054002 (2014)
https://doi.org/10.1103/PhysRevApplied.2.054002
24 S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system, Phys. Rev. A 99(4), 043803 (2019)
https://doi.org/10.1103/PhysRevA.99.043803
25 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
https://doi.org/10.1038/nature02851
26 C. Roy, and S. Hughes, Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects, Phys. Rev. Lett. 106(24), 247403 (2011)
https://doi.org/10.1103/PhysRevLett.106.247403
27 E. H. Turner, Interaction of phonons and spin waves in yttrium iron garnet, Phys. Rev. Lett. 5(3), 100 (1960)
https://doi.org/10.1103/PhysRevLett.5.100
28 Y. L. Liu and Y. X. Liu, Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity, Phys. Rev. A 96(2), 023812 (2017)
https://doi.org/10.1103/PhysRevA.96.023812
29 Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array, Phys. Rev. A 96(4), 043810 (2017)
https://doi.org/10.1103/PhysRevA.96.043810
30 Y. Y. Fu, Y. Fei, D. X. Dong, and Y. W. Liu, Photonic spin Hall effect in PT symmetric metamaterials, Front. Phys. 14(6), 62601 (2019)
https://doi.org/10.1007/s11467-019-0938-8
31 Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
https://doi.org/10.1103/PhysRevLett.106.093902
32 H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
https://doi.org/10.1103/PhysRevLett.113.053604
33 L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Magnon blockade in a PT-symmetric-like cavity magnomechanical system, Ann. Phys. 532(7), 2000028 (2020)
https://doi.org/10.1002/andp.202000028
34 B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
https://doi.org/10.1364/OE.26.020248
35 K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
https://doi.org/10.1103/PhysRevX.6.021007
36 Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT-phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)
https://doi.org/10.1103/PhysRevLett.112.143903
37 B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
https://doi.org/10.1038/nphys2927
38 Z. P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
https://doi.org/10.1103/PhysRevLett.117.110802
39 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
40 J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
https://doi.org/10.1038/nature10261
41 I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
42 Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
https://doi.org/10.1103/PhysRevA.91.033818
43 K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6, 237250 (2011)
https://doi.org/10.1007/s11467-011-0164-5
44 B. Y. Zhou and G. X. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot–cavity system, Phys. Rev. A 94(3), 033809 (2016)
https://doi.org/10.1103/PhysRevA.94.033809
45 M. S. Ding, L. Zheng, and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020)
https://doi.org/10.1364/JOSAB.380755
46 X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2(3), e1501286 (2016)
https://doi.org/10.1126/sciadv.1501286
47 J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-photonphonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121(20), 203601 (2018)
https://doi.org/10.1103/PhysRevLett.121.203601
48 T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
https://doi.org/10.1103/PhysRev.58.1098
49 R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2726 (2000)
https://doi.org/10.1103/PhysRevLett.84.2726
50 B. He, S. B. Yan, J. Wang, and M. Xiao, Quantum noise effects with Kerr-nonlinearity enhancement in coupled gainloss waveguides, Phys. Rev. A 91(5), 053832 (2015)
https://doi.org/10.1103/PhysRevA.91.053832
51 B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-time symmetric structure with coupled gainloss microcavities, Phys. Rev. A 91(3), 033830 (2015)
https://doi.org/10.1103/PhysRevA.91.033830
52 G. S. Agarwal and K. Qu, Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems, Phys. Rev. A 85, 031802(R) (2012)
https://doi.org/10.1103/PhysRevA.85.031802
53 B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
https://doi.org/10.1103/PhysRevA.94.031802
54 K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, PT-symmetry breaking in the steady state of microscopic gain–loss systems, New J. Phys. 18(9), 095003 (2016)
https://doi.org/10.1088/1367-2630/18/9/095003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed