Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (2) : 22500    https://doi.org/10.1007/s11467-020-1007-z
TOPICAL REVIEW
Development in the application of laser-induced breakdown spectroscopy in recent years: A review
Lian-Bo Guo (郭连波)1, Deng Zhang (张登)1, Lan-Xiang Sun (孙兰香)2, Shun-Chun Yao (姚顺春)3, Lei Zhang (张雷)4, Zhen-Zhen Wang (王珍珍)5, Qian-Qian Wang (王茜蒨)6, Hong-Bin Ding (丁洪斌)7, Yuan Lu (卢渊)8, Zong-Yu Hou (侯宗余)9, Zhe Wang (王哲)9()
1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Electric Power, South China University of Technology, Guangzhou 510640, China
4. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
5. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
6. Key Laboratory of Photonic Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
7. School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, China
8. Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
9. State Key Lab of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(2415 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser-induced breakdown spectroscopy (LIBS) has been widely studied due to its unique advantages such as remote sensing, real-time multi-elemental detection and none-to-little damage. With the efforts of researchers around the world, LIBS has been developed by leaps and bounds. Moreover, in recent years, more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications. It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties, therefore it may develop in different stages. A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application. In the present work, we summarized the research status and latest progress of main research groups in coal, metallurgy, and water, etc. Based on the current research status, the challenges and opportunities of LIBS were evaluated, and suggestions were made to further promote LIBS applications.

Keywords laser-induced breakdown spectroscopy      application     
Corresponding Author(s): Zhe Wang (王哲)   
Issue Date: 03 February 2021
 Cite this article:   
Lian-Bo Guo (郭连波),Deng Zhang (张登),Lan-Xiang Sun (孙兰香), et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Front. Phys. , 2021, 16(2): 22500.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1007-z
https://academic.hep.com.cn/fop/EN/Y2021/V16/I2/22500
1 Y. M. Guo, L. B. Guo, J. M. Li, H. D. Liu, Z. H. Zhu, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data, Front. Phys. 11(5), 114212 (2016)
https://doi.org/10.1007/s11467-016-0604-3
2 J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)
https://doi.org/10.1039/b400355c
3 B. Busser, S. Moncayo, J. L. Coll, L. Sancey, and V. Motto-Ros, Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications, Coord. Chem. Rev. 358, 70 (2018)
https://doi.org/10.1016/j.ccr.2017.12.006
4 M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review, Trends Food Sci. Technol. 65, 80 (2017)
https://doi.org/10.1016/j.tifs.2017.05.005
5 J. Laserna, J. M. Vadillo and P. Purohit, Laser-induced breakdown spectroscopy (LIBS): Fast, effective, and agile leading edge analytical technology, Appl. Spectrosc. 72(Suppl. 1), 35 (2018)
https://doi.org/10.1177/0003702818791926
6 G. G. Arantes de Carvalho, M. B. Bueno Guerra, A. Adame, C. S. Nomura, P. V. Oliveira, H. W. Pereira de Carvalho, D. Santos, L. C. Nunes, and F. J. Krug, Recent advances in LIBS and XRF for the analysis of plants, J. Anal. At. Spectrom. 33(6), 919 (2018)
https://doi.org/10.1039/C7JA00293A
7 M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno, Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62(1), 2841 (2018)
https://doi.org/10.4081/ejh.2018.2841
8 C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, and D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera laser induced breakdown spectroscopy instrument, Spectrochim. Acta B At. Spectrosc. 66(3–4), 280 (2011)
https://doi.org/10.1016/j.sab.2011.03.012
9 L. Peret, O. Gasnault, R. Dingler, Y. Langevin, S. Bender, D. Blaney, S. Clegg, C. Clewans, D. Delapp, C. M. Donny, S. Johnstone, C. Little, E. Lorigny, R. McInroy, S. Maurice, N. Mittal, B. Pavri, R. Perez, R. C. Wiens and C. Yana, Restoration of the Autofocus capability of the ChemCam instrument onboard the Curiosity rover (2016)
https://doi.org/10.2514/6.2016-2539
10 S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, Classification of red wine based on its protected designation of origin (PDO) using Laserinduced Breakdown Spectroscopy (LIBS), Talanta 158, 185 (2016)
https://doi.org/10.1016/j.talanta.2016.05.059
11 Y. G. Mbesse Kongbonga, H. Ghalila, M. B. Onana, and Z. Ben Lakhdar, Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS), Food Chem. 147, 327 (2014)
https://doi.org/10.1016/j.foodchem.2013.09.145
12 E. C. Ferreira, E. J. Ferreira, P. R. Villas-Boas, G. S. Senesi, C. M. Carvalho, R. A. Romano, L. Martin-Neto, and D. M. B. P. Milori, Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 99, 76 (2014)
https://doi.org/10.1016/j.sab.2014.06.016
13 C. K. Kim, J. H. In, S. H. Lee, and S. Jeong, Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis, Opt. Lett. 39(13), 3818 (2014)
https://doi.org/10.1364/OL.39.003818
14 Y. W. Chu, S. S. Tang, S. X. Ma, Y. Y. Ma, Z. Q. Hao, Y. M. Guo, L. B. Guo, Y. F. Lu, and X. Y. Zeng, Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laserinduced breakdown spectroscopy, Opt. Express 26(8), 10119 (2018)
https://doi.org/10.1364/OE.26.010119
15 Y. Chu, T. Chen, F. Chen, Y. Tang, S. Tang, H. Jin, L. Guo, Y. Lu, and X. Zeng, Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method, J. Anal. At. Spectrom. 33(12), 2083 (2018)
https://doi.org/10.1039/C8JA00263K
16 R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G. S. Senesi, and A. De Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
https://doi.org/10.3390/s100807434
17 J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, L. Ye, and Y. He, Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review, TrAC Trends in Analytical Chemistry 85, 260 (2016)
https://doi.org/10.1016/j.trac.2016.08.015
18 Y. T. Fu, W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
https://doi.org/10.1007/s11467-020-1006-0
19 S. Sheta, M. S. Afgan, Z. Hou, S. C. Yao, L. Zhang, Z. Li, and Z. Wang, Coal analysis by laser-induced breakdown spectroscopy: A tutorial review, J. Anal. At. Spectrom. 34(6), 1047 (2019)
https://doi.org/10.1039/C9JA00016J
20 T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B At. Spectrosc. 65(8), 734 (2010)
https://doi.org/10.1016/j.sab.2010.04.020
21 T. Ctvrtnickova, M. P. Mateo, A. Yañnez, and G. Nicolas, Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends, Appl. Surf. Sci. 257(12), 5447 (2011)
https://doi.org/10.1016/j.apsusc.2010.12.025
22 M. P. Mateo, G. Nicolas, and A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)
https://doi.org/10.1016/j.apsusc.2007.08.043
23 D. Redoglio, E. Golinelli, S. Musazzi, U. Perini, and F. Barberis, A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal, Spectrochim. Acta B At. Spectrosc. 116, 46 (2016)
https://doi.org/10.1016/j.sab.2015.11.005
24 L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
https://doi.org/10.1007/s11467-012-0259-7
25 T. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
https://doi.org/10.1039/c3ja50097g
26 T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
https://doi.org/10.1016/j.aca.2013.11.027
27 Z. Hou, Z. Wang, T. Yuan, J. Liu, Z. Li, and W. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
https://doi.org/10.1039/C5JA00475F
28 J. Feng, Z. Wang, L. Li, Z. Li, and W. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laserinduced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
https://doi.org/10.1366/11-06393
29 X. Li, H. Yin, Z. Wang, Y. Fu, Z. Li, and W. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 111, 102 (2015)
https://doi.org/10.1016/j.sab.2015.07.007
30 X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu, and W. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
https://doi.org/10.1366/13-07345
31 X. Li, X. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laserinduced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
https://doi.org/10.1088/1009-0630/17/11/07
32 Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)
https://doi.org/10.1364/OE.20.0A1011
33 Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
https://doi.org/10.1039/D0JA00195C
34 Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 68, 58 (2012)
https://doi.org/10.1016/j.sab.2012.01.005
35 J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
https://doi.org/10.1007/s00216-011-4865-y
36 H. Qin, Z. Lu, S. Yao, Z. Li, and J. Lu, Combining laserinduced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties, J. Anal. At. Spectrom. 34(2), 347 (2019)
https://doi.org/10.1039/C8JA00381E
37 S. Yao, J. Zhao, J. Xu, Z. Lu, and J. Lu, Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal, J. Anal. At. Spectrom. 32(4), 766 (2017)
https://doi.org/10.1039/C6JA00458J
38 Z. Lu, J. Mo, S. Yao, J. Zhao, and J. Lu, Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm, Energy Fuels 31(4), 3849 (2017)
https://doi.org/10.1021/acs.energyfuels.7b00025
39 S. Yao, J. Mo, J. Zhao, Y. Li, X. Zhang, W. Lu, and Z. Lu, Development of a rapid coal analyzer using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 72(8), 1225 (2018)
https://doi.org/10.1177/0003702818772856
40 M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, and J. H. Yoo, A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS, J. Anal. At. Spectrom. 34(3), 480 (2019)
https://doi.org/10.1039/C8JA00414E
41 S. Li, M. Dong, F. Luo, W. Li, L. Wei, and J. Lu, Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy, Journal of the Energy Institute 93(1), 52 (2020)
https://doi.org/10.1016/j.joei.2019.04.009
42 W. Li, M. Dong, S. Lu, S. Li, L. Wei, J. Huang, and J. Lu, Improved measurement of the calorific value of pulverized coal particle flow by laser-induced breakdown spectroscopy (LIBS), Anal. Methods 11(35), 4471 (2019)
https://doi.org/10.1039/C9AY01246J
43 W. Li, J. Lu, M. Dong, S. Lu, J. Yu, S. Li, J. Huang, and J. Liu, Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS), Energy Fuels 32(1), 24 (2017)
https://doi.org/10.1021/acs.energyfuels.7b01718
44 L. Zhang, L. Dong, H. Dou, W. Yin, and S. Jia, Laserinduced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
https://doi.org/10.1366/000370208784046786
45 W. Yin, L. Zhang, L. Dong, W. Ma, and S. Jia, Design of a laser-induced breakdown spectroscopy system for online quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
https://doi.org/10.1366/000370209788964458
46 L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, and S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
https://doi.org/10.1366/10-06213
47 L. Zhang, Y. Gong, Y. Li, X. Wang, J. Fan, L. Dong, W. Ma, W. Yin, and S. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 167 (2015)
https://doi.org/10.1016/j.sab.2015.09.021
48 Y. Z. Liu, Z. H. Wang, Y. Lv, K. D. Wan, Y. He, J. Xia, and K. F. Cen, Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements, Fuel 212, 498 (2018)
https://doi.org/10.1016/j.fuel.2017.10.081
49 Y. Liu, Z. Wang, K. Wan, Y. Lv, J. Xia, Y. He, and K. Cen, In situ measurements of the release characteristics and catalytic effects of different chemical forms of sodium during combustion of Zhundong coal, Energy Fuels 32(6), 6595 (2018)
https://doi.org/10.1021/acs.energyfuels.8b00773
50 T. Zhang, C. Yan, J. Qi, H. Tang, and H. Li, Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods, J. Anal. At. Spectrom. 32(10), 1960 (2017)
https://doi.org/10.1039/C7JA00218A
51 C. Yan, J. Qi, J. Ma, H. Tang, T. Zhang, and H. Li, Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernelbased extreme learning machine, Chemom. Intell. Lab. Syst. 167, 226 (2017)
https://doi.org/10.1016/j.chemolab.2017.06.006
52 C. Yan, J. Qi, J. Liang, T. Zhang, and H. Li, Determination of coal properties using laser-induced breakdown spectroscopy combined with kernel extreme learning machine and variable selection, J. Anal. At. Spectrom. 33(12), 2089 (2018)
https://doi.org/10.1039/C8JA00284C
53 C. Yan, T. Zhang, Y. Sun, H. Tang, and H. Li, A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine, Spectrochim. Acta B At. Spectrosc. 154, 75 (2019)
https://doi.org/10.1016/j.sab.2019.02.007
54 Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 87, 130 (2013)
https://doi.org/10.1016/j.sab.2013.05.034
55 Z. Z. Wang, Y. Deguchi, S. Katsumori, A. Ikutomo, J. J. Yan, J. P. Liu, K. Tainaka, K. Tanno, H. Watanabe, and R. Kurose, Improved measurement characteristics of elemental compositions using laser-induced breakdown spectroscopy, Spectroscopy (Santa Monica) 31(1), 22 (2016)
56 Z. Wang, R. Liu, Y. Deguchi, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. Yan, and J. Liu, Detection improvement of unburned carbon content in fly ash flow using libs with a two-stage cyclone measurement system, Energy Fuels 33(8), 7805 (2019)
https://doi.org/10.1021/acs.energyfuels.9b01161
57 R. W. Liu, Y. Deguchi, W. G. Nan, R. M. Hu, Z. Z. Wang, Y. Fujita, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. P. Liu, and J. J. Yan, Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short nanosecond pulse width laser, Adv. Powder Technol. 30(6), 1210 (2019)
https://doi.org/10.1016/j.apt.2019.03.017
58 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
59 J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, 2007
60 W. W. Wu, The concentration of silver from oxidative silver-manganese ore with united technologies of beneficiation and metallurgy,Nonferrous Metals (Mineral Processing)5 (2003)
61 F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
https://doi.org/10.1007/s11467-012-0263-y
62 V. Lakshmanan, A. Ojaghi, and B. Gorain, Beneficiation of Gold and Silver Ores, in: Innovations and Breakthroughs in the Gold and Silver Industries, Springer, 2019
https://doi.org/10.1007/978-3-030-32549-7
63 M. Gaft, Laser-Induced Breakdown Spectroscopy (LIBS) for On-line Control in Mining Industry, in: Applied Industrial Optics: Spectroscopy, Imaging and Metrology, Optical Society of America, 2011
https://doi.org/10.1364/AIO.2011.AITuA2
64 D. H. Diaz Ordonez, Laser-induced breakdown spectroscopy (LIBS) for analysis of precious metals in minerals, 2017
65 S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing,Metall. Mater. Trans. B 48(5), 2731 (2017)
https://doi.org/10.1007/s11663-017-1032-7
66 L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)
https://doi.org/10.1016/j.sab.2015.08.008
67 Q. Zeng, C. Pan, C. Li, T. Fei, X. Ding, X. Du, and Q. Wang, Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 142, 68 (2018)
https://doi.org/10.1016/j.sab.2018.01.011
68 Z. Qiang, P. Congyuan, F. Teng, D. Xiaokang, W. Shengbo, and W. Qiuping, Composition and temperature monitoring of molten metal by a combined LIBS-IR thermometry system, J. Appl. Spectrosc. 85(5), 817 (2018)
https://doi.org/10.1007/s10812-018-0723-4
69 L. X. Sun, H. B. Yu, Z. B. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, and Y. Li, Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochim. Acta B At. Spectrosc. 142, 29 (2018)
https://doi.org/10.1016/j.sab.2018.02.005
70 L. M. Cabalin, T. Delgado, J. Ruiz, D. Mier, and J. J. Laserna, Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations, At-line monitoring of temporal evolution versus predicted mathematical model, Spectrochim. Acta B At. Spectrosc. 146, 93 (2018)
https://doi.org/10.1016/j.sab.2018.05.001
71 J. Ruiz, T. Delgado, L. M. Cabal'in, and J. J. Laserna, At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 32(6), 1119 (2017)
https://doi.org/10.1039/C7JA00093F
72 V. Sturm, C. Meinhardt, R. Fleige, C. Fricke-Begemann, and J. Eisbach, Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 136, 66 (2017)
https://doi.org/10.1016/j.sab.2017.08.009
73 S. H. Gudmundsson, J. Matthiasson, B. M. Bjornsson, H. Gudmundsson, and K. Leosson, Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 158, 105646 (2019)
https://doi.org/10.1016/j.sab.2019.105646
74 J. Herbert, J. Fernandez, R. D. Saro, and J. Craparo, The Industrial Application of Molten Metal Analysis (LIBS), 2019
https://doi.org/10.1007/978-3-030-05864-7_115
75 O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, Atomic spectrometry update –a review of advances in environmental analysis, J. Anal. At. Spectrom. 32(1), 11 (2017)
76 X. Yu, Y. Li, X. Gu, J. Bao, H. Yang, and L. Sun, Laserinduced breakdown spectroscopy application in environmental monitoring of water quality: A review, Environ. Monit. Assess. 186(12), 8969 (2014)
https://doi.org/10.1007/s10661-014-4058-1
77 H. Tian, L. Jiao, and D. Dong, Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment, Sci. Rep. 9(1), 10443 (2019)
https://doi.org/10.1038/s41598-019-46924-z
78 J. Kang, R. Li, Y. Wang, Y. Chen, and Y. Yang, Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber, J. Anal. At. Spectrom. 32(11), 2292 (2017)
https://doi.org/10.1039/C7JA00244K
79 N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples, Appl. Opt. 47(31), G105 (2008)
https://doi.org/10.1364/AO.47.00G105
80 J. S. Huang, C. B. Ke, L. S. Huang, and K. C. Lin, The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets, Spectrochim. Acta B At. Spectrosc. 57(1), 35 (2002)
https://doi.org/10.1016/S0584-8547(01)00349-4
81 F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 403(9), 2601 (2012)
https://doi.org/10.1007/s00216-012-6019-2
82 Z. Shilei, Z. Ronger, L. Yuan, C. Kai, and X. Junshan, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)
https://doi.org/10.1088/1009-0630/17/11/17
83 D. Zhang, Z. Hu, Y. Su, B. Hai, X. Zhu, J. Zhu, and X. Ma, Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS), Opt. Express 26(14), 18794 (2018)
https://doi.org/10.1364/OE.26.018794
84 X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, Simultaneous and sensitive analysis of Ag (I), Mn (II), and Cr (III) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent, J. Anal. At. Spectrom. 29(6), 1098 (2014)
https://doi.org/10.1039/c4ja00021h
85 X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy, Anal. Chem. 87(11), 5577 (2015)
https://doi.org/10.1021/acs.analchem.5b00253
86 X. Yang, Z. Hao, M. shen, R. Yi, J. Li, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Talanta 163, 127 (2017)
https://doi.org/10.1016/j.talanta.2016.10.094
87 X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laserinduced breakdown spectroscopy, Opt. Express 24(12), 13410 (2016)
https://doi.org/10.1364/OE.24.013410
88 X. Yang, R. Yi, X. Li, Z. Cui, Y. Lu, Z. Hao, J. Huang, Z. Zhou, G. Yao, and W. Huang, Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 26(23), 30456 (2018)
https://doi.org/10.1364/OE.26.030456
89 S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 27(10), 15091 (2019)
https://doi.org/10.1364/OE.27.015091
90 S. Ma, Y. Tang, Y. Ma, D. Dong, L. Guo, H. Zhu, J. Liu, and Y. Lu, The pH effect on the detection of heavy metals in wastewater by laser-induced breakdown spectroscopy coupled with a phase transformation method, J. Anal. At. Spectrom. 35(1), 198 (2020)
https://doi.org/10.1039/C9JA00349E
91 S. Ma, Y. Tang, S. Zhang, Y. Ma, Z. Sheng, Z. Wang, L. Guo, J. Yao, and Y. Lu, Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy, Talanta 214, 120849 (2020)
https://doi.org/10.1016/j.talanta.2020.120849
92 F. Ruiz, L. Ripoll, M. Hidalgo, and A. Canals, Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS), Talanta 191, 162 (2019)
https://doi.org/10.1016/j.talanta.2018.08.044
93 A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential, Anal. Chem. 87(3), 1655 (2015)
https://doi.org/10.1021/ac503737c
94 L. Ripoll and M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESDLIBS): A new method for trace elemental analysis of aqueous samples, J. Anal. At. Spectrom. 34(10), 2016 (2019)
https://doi.org/10.1039/C9JA00145J
95 J. Cortez and C. Pasquini, Ring-oven based preconcentration technique for microanalysis: Simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy, Anal. Chem. 85(3), 1547 (2013)
https://doi.org/10.1021/ac302755h
96 D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 70 (2015)
https://doi.org/10.1016/j.sab.2015.09.005
97 N. Aras, and Ş. Yalçn, Investigating silicon wafer based substrates for dried-droplet analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 152, 84 (2019)
https://doi.org/10.1016/j.sab.2018.12.013
98 A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level, Anal. Chem. 88(10), 5251 (2016)
https://doi.org/10.1021/acs.analchem.6b00324
99 V. N. Rai, F. Y. Yueh, and J. P. Singh, Study of laserinduced breakdown emission from liquid under doublepulse excitation, Appl. Opt. 42(12), 2094 (2003)
https://doi.org/10.1364/AO.42.002094
100 K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 27(2), 276 (2012)
https://doi.org/10.1039/C1JA10178A
101 Y. Wang, J. Kang, Y. Chen, and R. Li, Sensitive analysis of copper in water by LIBS–LIF assisted by simple sample pretreatment, J. Appl. Spectrosc. 86(2), 353 (2019)
https://doi.org/10.1007/s10812-019-00825-1
102 M. Wall, Z. Sun, and Z. T. Alwahabi, Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy, Opt. Express 24(2), 1507 (2016)
https://doi.org/10.1364/OE.24.001507
103 R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
https://doi.org/10.3390/s100807434
104 R. Kumar, A. Devanathan, N. Mishra and A. Rai, Quantification of heavy metal contamination in soil and plants near a leather tanning industrial area using Libs and TXRF, J. Appl. Spectrosc., 86(5), 840 (2019)
https://doi.org/10.1007/s10812-019-00919-w
105 R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method, Anal. Chem. 90(11), 7080 (2018)
https://doi.org/10.1021/acs.analchem.8b01756
106 T. Wang, M. He, T. Shen, F. Liu, Y. He, X. Liu, and Z. Qiu, Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China, Spectrochim. Acta B At. Spectrosc. 149, 300 (2018)
https://doi.org/10.1016/j.sab.2018.09.008
107 S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy, Results in Physics 15, 102736 (2019)
https://doi.org/10.1016/j.rinp.2019.102736
108 Y. Ding, G. Xia, H. Ji, and X. Xiong, Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS), Anal. Methods 11(29), 3657 (2019)
https://doi.org/10.1039/C9AY01030K
109 D. Meng, N. Zhao, M. Ma, L. Fang, Y. Gu, Y. Jia, J. Liu, and W. Liu, Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil, Appl. Opt. 56(18), 5204 (2017)
https://doi.org/10.1364/AO.56.005204
110 M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. Baig, Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 148, 143 (2018)
https://doi.org/10.1016/j.sab.2018.06.016
111 M. Akhtar, A. Jabbar, S. Mahmood, Z. A. Umar, R. Ahmed, and M. Aslam Baig, Analysis of soil by magnetic field assisted calibration-free laser induced breakdown spectroscopy (CF-LIBS) and laser ablation–timeof- flight mass spectrometry (LA-TOF-MS), Anal. Lett. 52(14), 2312 (2019)
https://doi.org/10.1080/00032719.2019.1610417
112 M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z. Umar, R. Ahmed, and M. Baig, Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field, Appl. Phys. B 125(6), 110 (2019)
https://doi.org/10.1007/s00340-019-7225-9
113 G. Kim, J. Kwak, J. Choi, and K. Park, Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 60(3), 718 (2012)
https://doi.org/10.1021/jf203518f
114 R. A. Multari, D. A. Cremers, T. Scott, and P. Kendrick, Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 61(10), 2348 (2013)
https://doi.org/10.1021/jf304589s
115 D. Yang and Y. Ying, Applications of Raman spectroscopy in agricultural products and food analysis: A review, Appl. Spectrosc. Rev. 46(7), 539 (2011)
https://doi.org/10.1080/05704928.2011.593216
116 L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review, Appl. Spectrosc. Rev. 48(2), 142 (2013)
https://doi.org/10.1080/05704928.2012.705800
117 G. Nicolodelli, G. S. Senesi, A. C. Ranulfi, B. S. Marangoni, A. Watanabe, V. de Melo Benites, P. P. A. de Oliveira, P. Villas-Boas, and D. M. B. P. Milori, Doublepulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples, Microchem. J. 133, 272 (2017)
https://doi.org/10.1016/j.microc.2017.03.047
118 S. Pandhija and A. K. Rai, Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS, Environ. Monit. Assess. 148(1–4), 437 (2009)
https://doi.org/10.1007/s10661-008-0173-1
119 C. Wang, L. Huang, M. Liu, P. Yang, T. Chen, H. Hu, W. Li, and M. Yao, Influence of water content on the detection of sensitivity of Pb in potatoes by LIBS, Acta Agriculturae Universitatis Jiangxiensis 38(2), 393 (2016)
120 C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Enhancement of Pb intensity in potatoes by microwave assisted LIBS, Chinese Journal of Analysis Laboratory 35(5), 506 (2016)
121 C. Wang, L. Huang, S. Hu, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Feasibility of predicting the distribution of Cu in Navel orange pulp by LIBS spectra of peel,Chinese Journal of Analysis Laboratory 35(3), 253 (2016)
122 W. B. Li, L. T. Yao, M. H. Liu, L. Huang, M. Y. Yao, T. B. Chen, X. W. He, P. Yang, H. Q. Hu, and J. H. Nie, Influence of spectral pre-processing on PLS quantitative model of detecting cu in navel orange by LIBS, Spectroscopy and Spectral Analysis 35(5), 1392 (2015)
123 W. B. Li, M. Y. Yao, L. Huang, T. B. Chen, J. H. Zheng, S. Q. Fan, M. H. Liu, X. W. He, J. L. Lin, and J. Y. Ouyang, Effect of characteristic variable extraction on accuracy of Cu in Navel orange peel by LIBS, Spectroscopy and Spectral Analysis 35(7), 2021 (2015)
124 C. H. Wang, L. Huang, T. B. Chen, M. H. Liu, H. Yang, H. Q. Hu, and M. Y. Yao, Feasibility of analyzing Cr in rice husk and coarse rice with LIBS, Spectroscopy and Spectral Analysis 37(11), 3590 (2017)
125 H. Yang, L. Huang, M. Liu, T. Chen, C. Wang, and M. Yao, Comparison of precision and accuracy in analyzing Cd in rice by LIBS combined with multivariate regression, Chinese Journal of Analysis Laboratory 36(4), 399 (2017)
126 C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Determination of heavy metal chromium in rice husk by LIBS coupled with SiPLS, Laser & Optoelectronics Progress 53(11), 113001 (2016)
127 C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Comparison of accuracy in detecting Cr in pork by LIBS coupled with different characteristic lines, Chinese Journal of Analysis Laboratory 36(1), 32 (2017)
128 H. Yang, C. H. Wang, M. H. Liu, T. B. Chen, L. Huang, and M. Y. Yao, Improvement of LIBS accuracy in detecting Pb in pork by physical pretreatment of samples, Spectroscopy and Spectral Analysis 37(8), 2580 (2017)
129 G. F. Rao, L. Huang, M. H. Liu, T. B. Chen, J. Y. Chen, Z. Y. Luo, F. H. Xu, X. H. Xu, and M. Y. Yao, Identification of Huanglongbing-infected nave oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods, Appl. Opt. 57(29), 8738 (2018)
https://doi.org/10.1364/AO.57.008738
130 J. Peng, Y. He, Z. Zhao, J. Jiang, F. Zhou, F. Liu and T. Shen, Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods, Environ. Pollut. 252(Pt B), 1125 (2019)
https://doi.org/10.1016/j.envpol.2019.06.027
131 J. Peng, Y. He, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laserinduced breakdown spectroscopy and chemometric methods, Food Chem. 295, 327 (2019)
https://doi.org/10.1016/j.foodchem.2019.05.119
132 X. Liu, X. Feng, F. Liu, J. Peng, and Y. He, Rapid identification of genetically modified maize using laser-induced breakdown spectroscopy, Food Bioprocess Technol. 12(2), 347 (2018)
https://doi.org/10.1007/s11947-018-2216-0
133 T. Shen, W. Kong, F. Liu, Z. Chen, J. Yao, W. Wang, J. Peng, H. Chen, and Y. He, Rapid determination of cadmium contamination in lettuce using laser-induced breakdown spectroscopy, Molecules 23(11), 2930 (2018)
https://doi.org/10.3390/molecules23112930
134 F. Liu, T. Shen, W. Kong, J. Peng, C. Zhang, K. Song, W. Wang, C. Zhang, and Y. He, Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics, Front. Plant Sci. 9, 1316 (2018)
https://doi.org/10.3389/fpls.2018.01316
135 J. Peng, W. Xie, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, Fast quantification of honey adulteration with laserinduced breakdown spectroscopy and chemometric methods, Foods 9(3), 341 (2020)
https://doi.org/10.3390/foods9030341
136 Z. Zhao, L. Chen, F. Liu, F. Zhou, J. Peng, and M. Sun, Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis, Sensors (Basel) 20(7), 1878 (2020)
https://doi.org/10.3390/s20071878
137 F. Liu, F. Liu, T. Shen, J. Wang, Y. He, C. Zhang, W. Zhou, T. Shen, J. Wang, Y. He, C. Zhang, and W. Zhou, Detection of sclerotinia stem rot on oilseed rape (Brassica napus L.) based on laser-induced breakdown spectroscopy, Trans. ASABE 62(1), 123 (2019)
https://doi.org/10.13031/trans.12206
138 J. Peng, Y. He, L. Ye, T. Shen, F. Liu, W. Kong, X. Liu, and Y. Zhao, Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: A case study for chromium content detection in rice leaves, Anal. Chem. 89(14), 7593 (2017)
https://doi.org/10.1021/acs.analchem.7b01441
139 P. Yang, Y. Zhu, X. Yang, J. Li, S. Tang, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, Evaluation of sample preparation methods for rice geographic origin classification using laser-induced breakdown spectroscopy, J. Cereal Sci. 80, 111 (2018)
https://doi.org/10.1016/j.jcs.2018.01.007
140 P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy, Food Chem. 272, 323 (2019)
https://doi.org/10.1016/j.foodchem.2018.07.214
141 Y. Zhao, Q. Wang, X. Cui, G. Teng, K. Wei, and H. Liu, Discrimination of hazardous bacteria with combination laser-induced breakdown spectroscopy and statistical methods, Appl. Opt. 59(5), 1329 (2020)
https://doi.org/10.1364/AO.379136
142 Y. Du, Q. Wang, Y. Zhao, X. Cui, and Z. Peng, Rapid qualitative evaluation of velvet antler using laserinduced breakdown spectroscopy (LIBS), Laser Phys. 29(9), 095602 (2019)
https://doi.org/10.1088/1555-6611/ab36b2
143 J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds, Food Chem. 221, 1778 (2017)
https://doi.org/10.1016/j.foodchem.2016.10.104
144 B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, and I. H. Boyaci, Identification of milk fraud using laserinduced breakdown spectroscopy (LIBS), Int. Dairy J. 81, 1 (2018)
https://doi.org/10.1016/j.idairyj.2017.12.005
145 T. V. Silva, S. Z. Hubinger, J. A. Gomes Neto, D. M. B. P. Milori, E. J. Ferreira, and E. C. Ferreira, Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee, Spectrochim. Acta B At. Spectrosc. 135, 29 (2017)
https://doi.org/10.1016/j.sab.2017.06.015
146 B. B. S. Jaswal and V. K. Singh, Analytical assessments of gallstones and urinary stones: A comprehensive review of the development from laser to LIBS, Appl. Spectrosc. Rev. 50(6), 473 (2015)
https://doi.org/10.1080/05704928.2015.1010206
147 G. L. Coté, V. K. Unnikrishnan, R. Nayak, S. Bhat, S. Mathew, V. B. Kartha and C. Santhosh, Biomedical applications of laser-induced breakdown spectroscopy (LIBS), Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933211 (2015)
https://doi.org/10.1117/12.2080710
148 R. Grassi, E. Grifoni, S. Gufoni, S. Legnaioli, G. Lorenzetti, N. Macro, L. Menichetti, S. Pagnotta, F. Poggialini, C. Schiavo, and V. Palleschi, Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique, Spectrochim. Acta B At. Spectrosc. 127, 1 (2017)
https://doi.org/10.1016/j.sab.2016.11.004
149 T. R. Loree, The detection of elements in biomedical fluids by laser-induced breakdown spectroscopy, doi: 10.2351/1.5057553 (1983)
https://doi.org/10.2351/1.5057553
150 V. Singh, V. Kumar, J. Sharma, Y. Khajuria, and K. Kumar, Importance of laser induced breakdown spectroscopy for biomedical applications: A comprehensive review, Materials Focus 3(3), 169 (2014)
https://doi.org/10.1166/mat.2014.1162
151 S. J. Rehse, H. Salimnia, and A. W. Miziolek, Laserinduced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications, J. Med. Eng. Technol. 36(2), 77 (2012)
https://doi.org/10.3109/03091902.2011.645946
152 Y. Markushin, N. Melikechi, A. MarcanoO., S. Rock, E. Henderson, and D. Connolly, LIBS-based multi-element coded assay for ovarian cancer application, in: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications, International Society for Optics and Photonics, 2009, p. 719015
https://doi.org/10.1117/12.810247
153 Q. Wang, W. Xiangli, G. Teng, X. Cui, and K. Wei, A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues: Pathological diagnosis and physiological detection, Appl. Spectrosc. Rev. 1 (2020)
https://doi.org/10.1080/05704928.2020.1791151
154 Y. Chu, Z. Zhang, Q. He, F. Chen, Z. Sheng, D. Zhang, H. Jin, F. Jiang, and L. Guo, Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy, J. Adv. Res. 24, 353 (2020)
https://doi.org/10.1016/j.jare.2020.05.001
155 X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods, Spectrochim. Acta B At. Spectrosc. 139, 63 (2018)
https://doi.org/10.1016/j.sab.2017.11.016
156 X. Chen, X. Li, S. Yang, X. Yu, and A. Liu, Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples, Biomed. Opt. Express 9(3), 1057 (2018)
https://doi.org/10.1364/BOE.9.001057
157 X. Li, X. An, R. Fan, X. Yu, and D. Chen, Classification of soft tissues using laser-induced breakdown spectroscopy, SPIE Proceedings Novel Biophotonics Techniques and Applications IV, 2017, p. 1041303
158 X. Li, S. Yang, R. Fan, X. Yu, and D. Chen, Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers, Opt. Laser Technol. 102, 233 (2018)
https://doi.org/10.1016/j.optlastec.2018.01.028
159 X. Li, S. Yang, X. Chen, G. Yao, A. Liu, and X. Yu, Multi-elemental imaging of breast cancer tissues using laser-induced breakdown spectroscopy. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe- EQEC), IEEE, 2019
160 G. Teng, Q. Wang, H. Zhang, W. Xiangli, H. Yang, X. Qi, X. Cui, B. S. Idrees, K. Wei, and M. N. Khan, Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 165, 105787 (2020)
https://doi.org/10.1016/j.sab.2020.105787
161 Q. Wang, G. Teng, X. Qiao, Y. Zhao, J. Kong, L. Dong, and X. Cui, Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria, Biomed. Opt. Express 9(11), 5837 (2018)
https://doi.org/10.1364/BOE.9.005837
162 Y. Moon, J. H. Han, J. H. Choi, S. Shin, Y. C. Kim, and S. Jeong, Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy, J. Biomed. Opt. 24(3), 1 (2018)
https://doi.org/10.1117/1.JBO.24.3.031011
163 J. J. Lee, Y. Moon, J. H. Han, and S. Jeong, Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy, J. Biophoton. 10(4), 523 (2017)
https://doi.org/10.1002/jbio.201500343
164 S. Moncayo, F. Trichard, B. Busser, M. Sabatier-Vincent, F. Pelascini, N. Pinel, I. Templier, J. Charles, L. Sancey, and V. Motto-Ros, Multi-elemental imaging of paraffinembedded human samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 133, 40 (2017)
https://doi.org/10.1016/j.sab.2017.04.013
165 B. Busser, S. Moncayo, F. Trichard, V. Bonneterre, N. Pinel, F. Pelascini, P. Dugourd, J. L. Coll, M. D’Incan, J. Charles, V. Motto-Ros, and L. Sancey, Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy, Mod. Pathol. 31(3), 378 (2018)
https://doi.org/10.1038/modpathol.2017.152
166 F. J. Fortes, S. Guirado, A. Metzinger, and J. J. Laserna, A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean, J. Anal. At. Spectrom. 30(5), 1050 (2015)
https://doi.org/10.1039/C4JA00489B
167 M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, C. M. Gordon, and S. M. Angel, Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure, Spectrochim. Acta B At. Spectrosc. 99, 172 (2014)
https://doi.org/10.1016/j.sab.2014.06.008
168 N. Idris, M. Ramli, R. Hedwig, Z. S. Lie, and K. H. Kurniawan, Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS), AIP Conference Proceedings 1719, 030051 (2016)
https://doi.org/10.1063/1.4943746
169 P. Pease, and V. Tchakerian, Source provenance of carbonate grains in the Wahiba Sand Sea, Oman, using a new LIBS method, Aeolian Res. 15, 203 (2014)
https://doi.org/10.1016/j.aeolia.2014.06.001
170 J. Song, J. Guo, Y. Tian, Y. Lu, and R. Zheng, Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies, Proceedings Volume 10461, AOPC 2017: Optical Spectroscopy and Imaging78 (2017)
https://doi.org/10.1117/12.2285738
171 Y. Tian, B. Xue, J. Song, Y. Lu, Y. Li, and R. Zheng, Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers, Appl. Phys. Express 10(7), 072401 (2017)
https://doi.org/10.7567/APEX.10.072401
172 B. Xue, N. Li, Y. Lu, Y. Li, and R. Zheng, Emission enhancement of underwater collinear dual-pulse laserinduced breakdown spectroscopy with the second pulse defocused, Appl. Phys. Lett. 110(10), 101102 (2017)
https://doi.org/10.1063/1.4977893
173 J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements, Appl. Opt. 57(7), 1640 (2018)
https://doi.org/10.1364/AO.57.001640
174 J. Guo, A. S. Mahmoud, N. Li, J. Song, and R. Zheng, Study of pressure effects on ocean in-situdetection using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21(3), 034022 (2019)
https://doi.org/10.1088/2058-6272/aaf091
175 N. Li, J. Guo, C. Zhang, Y. Zhang, Q. Li, Y. Tian, and R. Zheng, Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy, Appl. Opt. 58(14), 3886 (2019)
https://doi.org/10.1364/AO.58.003886
176 N. Li, J. Guo, L. Zhu, Y. Lu, Y. Tian, and R. Zheng, Effects of ambient temperature on laser-induced plasma in bulk water, Appl. Spectrosc. 73(11), 1277 (2019)
177 B. Xue, Y. Tian, Y. Lu, Y. Li, and R. Zheng, Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies, Spectrochim. Acta B At. Spectrosc. 151, 20 (2019)
https://doi.org/10.1016/j.sab.2018.11.005
178 Q. Li, Y. Tian, B. Xue, N. Li, W. Ye, Y. Lu, and R. Zheng, Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information, J. Anal. At. Spectrom. 35(2), 366 (2020)
https://doi.org/10.1039/C9JA00367C
179 J. Guo, Y. Lu, K. Cheng, J. Song, W. Ye, N. Li, and R. Zheng, Development of a compact underwater laserinduced breakdown spectroscopy (LIBS) system and preliminary results in sea trials, Appl. Opt. 56(29), 8196 (2017)
https://doi.org/10.1364/AO.56.008196
180 W. Ye, J. Guo, N. Li, F. Qi, K. Cheng, and R. Zheng, Depth profiling investigation of seawater using combined multi-optical spectrometry, Appl. Spectrosc. 74(5), 563 (2020)
https://doi.org/10.1177/0003702820906890
181 S. Guirado, F. J. Fortes, V. Lazic, and J. J. Laserna, Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea, Spectrochim. Acta B At. Spectrosc. 74–75, 137 (2012)
https://doi.org/10.1016/j.sab.2012.06.032
182 S. Guirado, F. J. Fortes, and J. Javier Laserna, Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system, Talanta 137, 182 (2015)
https://doi.org/10.1016/j.talanta.2015.01.033
183 B. Thornton, T. Sakka, T. Takahashi, A. Tamura, A. Matsumoto, and T. Ura, Laser-induced breakdown spectroscopy for in situchemical analysis at sea, in: 2013 IEEE International Underwater Technology Symposium, 2013
https://doi.org/10.1109/UT.2013.6519823
184 B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
https://doi.org/10.1016/j.dsr.2014.10.006
185 T. Takahashi, S. Yoshino, Y. Takaya, T. Nozaki, K. Ohki, T. Ohki, T. Sakka, and B. Thornton, Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 158, 103232 (2020)
https://doi.org/10.1016/j.dsr.2020.103232
186 F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics, J. Anal. At. Spectrom. 26(3), 536 (2011)
https://doi.org/10.1039/c0ja00199f
187 A. Sarkar, V. M. Telmore, D. Alamelu, and S. K. Aggarwal, Laser induced breakdown spectroscopic quantification of platinum group metals in simulated high level nuclear waste, J. Anal. At. Spectrom. 24(11), 1545 (2009)
https://doi.org/10.1039/b913519g
188 B. Bhatt, K. Hudson Angeyo, and A. Dehayem-Kamadjeu, LIBS development methodology for forensic nuclear materials analysis, Anal. Methods 10(7), 791 (2018)
https://doi.org/10.1039/C7AY02520C
189 D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer, Appl. Spectrosc. 66(3), 250 (2012)
https://doi.org/10.1366/11-06314
190 S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITER-like plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)
https://doi.org/10.1016/j.jnucmat.2011.11.050
191 C. Li, C. L. Feng, H. Y. Oderji, G. N. Luo, and H. B. Ding, Review of LIBS application in nuclear fusion technology, Front. Phys. 11(6), 114214 (2016)
https://doi.org/10.1007/s11467-016-0606-1
192 Y. Qiu, J. Wu, X. Li, T. Liu, F. Xue, Z. Yang, Z. Zhang, and H. Yu, Parametric study of fiber-optic laserinduced breakdown spectroscopy for elemental analysis of Z3CN20-09M steel from nuclear power plants, Spectrochim. Acta B At. Spectrosc. 149, 48 (2018)
https://doi.org/10.1016/j.sab.2018.07.018
193 J. Wu, H. Yu, Y. Qiu, Z. Zhang, T. Liu, F. Xue, W. Yu, X. Li, and A. Qiu, X. Li and A. Qiu: Plasma characteristics and element analysis of steels from a nuclear power plant based on fiber-optic laser-induced breakdown spectroscopy, J. Phys. D Appl. Phys. 52(1), 014006 (2019)
https://doi.org/10.1088/1361-6463/aae7b4
194 L. Cai, Z. Wang, C. Li, X. Huang, D. Zhao, and H. Ding, Development of an in situ diagnostic system for mapping the deposition distribution on plasma facing components of the HL-2M tokamak, Rev. Sci. Instrum. 90(5), 053503 (2019)
https://doi.org/10.1063/1.5082630
195 Z. Hu, C. Li, Q. Xiao, P. Liu, F. Ding, H. Mao, J. Wu, D. Zhao, H. Ding, and G. N. Luo, Preliminary results ofin situlaser-induced breakdown spectroscopy for the first wall diagnostics on EAST, Plasma Sci. Technol. 19(2), 025502 (2017)
https://doi.org/10.1088/2058-6272/19/2/025502
196 D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 89(7), 073501 (2018)
https://doi.org/10.1063/1.5024848
197 Z. Hu, N. Gierse, C. Li, J. Oelmann, D. Zhao, M. Tokar, X. Jiang, D. Nicolai, J. Wu, F. Ding, S. Brezinsek, H. Ding, G. N. Luo, and C. Linsmeier, Laser induced ablation spectroscopy for in situ characterization of the first wall on EAST tokamak, Fusion Eng. Des. 135, 95 (2018)
https://doi.org/10.1016/j.fusengdes.2018.07.017
198 M. Imran, L. Y. Sun, P. Liu, H. Sattar, D. Zhao, Z. Mu, and H. Ding, Depth profiling of tungsten coating layer on CuCrZr alloy using LIBS approach, Surf. Interface Anal. 51(2), 210 (2019)
https://doi.org/10.1002/sia.6569
199 P. Liu, D. Wu, L. Y. Sun, D. Y. Zhao, R. Hai, C. Li, H. Ding, Z. H. Hu, L. Wang, J. S. Hu, J. L. Chen, and G. N. Luo, Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D codeposition in EAST tokamak, Fusion Eng. Des. 118, 98 (2017)
https://doi.org/10.1016/j.fusengdes.2017.03.021
200 J. Liu, D. Wu, C. Fu, R. Hai, X. Yu, L. Sun, and H. Ding, Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laserinduced breakdown spectroscopy in various pressure environments, Plasma Sci. Technol. 21(3), 034017 (2019)
https://doi.org/10.1088/2058-6272/aaf821
201 C. Li, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, C. P. Dhard, T. S. Pedersen, R. Konig, Y. F. Liang, H. B. Ding, C. Linsmeier and the W7-X team, Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis, Phys. Scr. T 170, 5 (2017)
https://doi.org/10.1088/0031-8949/2017/T170/014004
202 R. Hai, L. Sun, D. Wu, Z. He, H. Sattar, J. Liu, W. Tong, C. Li, C. Feng, and H. Ding, Enhanced laser-induced breakdown spectroscopy using the combination of circular and annular laser pulses, J. Anal. At. Spectrom. 34(10), 1982 (2019)
https://doi.org/10.1039/C9JA00230H
203 S. Harilal, C. Murzyn, M. Phillips, and J. B. Martin, Hyperfine structures and isotopic shifts of uranium transitions using tunable laser spectroscopy of laser ablation plumes, Spectrochim. Acta B At. Spectrosc. 169, 105828 (2020)
https://doi.org/10.1016/j.sab.2020.105828
204 E. J. Kautz, P. J. Skrodzki, M. Burger, B. E. Bernacki, I. Jovanovic, M. C. Phillips, and S. S. Harilal, Timeresolved imaging of atoms and molecules in laserproduced uranium plasmas, J. Anal. At. Spectrom. 34(11), 2236 (2019)
https://doi.org/10.1039/C9JA00228F
205 S. Harilal, P. Diwakar, N. LaHaye, and M. Phillips, Spatio-temporal evolution of uranium emission in laserproduced plasmas, Spectrochim. Acta B At. Spectrosc. 111, 1 (2015)
https://doi.org/10.1016/j.sab.2015.06.003
206 M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes, Sci. Rep. 7(1), 1 (2017)
https://doi.org/10.1038/s41598-017-03865-9
207 J. Song, G. C. Y. Chan, X. Mao, J. D. Woodward, R. W. III Smithwick, T. G. Schaaff, A. C. Stowe, C. D. Harris, R. Zheng, V. Zorba, and R. E. Russo, Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 150, 67 (2018)
https://doi.org/10.1016/j.sab.2018.10.008
208 X. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry, J. Radioanal. Nucl. Chem. 312(1), 121 (2017)
https://doi.org/10.1007/s10967-017-5197-y
209 S. Maji, S. Kumar, K. Sundararajan, and K. Sankaran, Feasibility study for quantification of lanthanides in LiF– KCl salt by laser induced breakdown spectroscopy,J. Radioanal. Nucl. Chem. 314(2), 1279 (2017)
https://doi.org/10.1007/s10967-017-5481-x
210 J. Oelmann, N. Gierse, C. Li, S. Brezinsek, M. Zlobinski, B. Turan, S. Haas, and C. Linsmeier, Depth-resolved sample composition analysis using laser-induced ablationquadrupole mass spectrometry and laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 144, 38 (2018)
https://doi.org/10.1016/j.sab.2018.03.009
211 D. Zhao, R. Yi, J. Oelmann, S. Brezinsek, M. Rasinski, Y. Gao, M. Mayer, C. Dhard, and M. Krause, Ex situ analysis of W7-X divertor plasma-facing components by picosecond laser diagnostics, Phys. Scr. 2020(T171), 014018 (2020)
https://doi.org/10.1088/1402-4896/ab3ee1
[1] Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application[J]. Front. Phys. , 2021, 16(3): 33201-.
[2] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[3] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[4] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[5] Yong Zhang,Yun-Hai Jia,Chun Yang,Dong-Ling Li,Jia Liu,Yong-Yan Chen,Ying Liu,Yi-Xiang Duan. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(6): 115205-.
[6] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
[7] Zhen-Zhen Wang (王珍珍),Yoshihiro Deguchi (出口祥啓),Zhen-Zhen Zhang (张臻臻),Zhe Wang (王哲),Xiao-Yan Zeng (曾晓雁),Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia[J]. Front. Phys. , 2016, 11(6): 114213-.
[8] Yang-Min Guo,Lian-Bo Guo,Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data[J]. Front. Phys. , 2016, 11(5): 114212-.
[9] Yong Xin (辛勇),Lan-Xiang Sun (孙兰香),Zhi-Jia Yang (杨志家),Peng Zeng (曾鹏),Zhi-Bo Cong (丛智博),Li-Feng Qi (齐立峰). In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system[J]. Front. Phys. , 2016, 11(5): 115207-.
[10] Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209-.
[11] Shi-Lei Zhong (钟石磊),Yuan Lu (卢渊),Wei-Jin Kong (孔伟金),Kai Cheng (程凯),Ronger Zheng (郑荣儿). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(4): 114202-.
[12] Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front. Phys. , 2015, 10(5): 104207-.
[13] Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng. Laser-induced breakdown spectroscopy in China[J]. Front. Phys. , 2014, 9(4): 419-438.
[14] Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image[J]. Front. Phys. , 2014, 9(4): 439-445.
[15] Ke-Xin Liu, Yu-Gang Wang, Tie-Shuan Fan, Guo-Hui Zhang, Jia-Er Chen. Frontier applications of electrostatic accelerators[J]. Front. Phys. , 2013, 8(5): 564-576.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed