|
|
Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application |
Lianzhen Cao1,2, Xia Liu1,2( ), Yingde Li1, Xiusheng Li1, Lena Du3, Shengyao Chen3, Shenlong Zhao4( ), Cong Wang2,3,5( ) |
1. Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China 2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore 3. CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China 4. School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia 5. College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract Low-dimensional all-inorganic metal halide perovskite (AIMHP) materials, as a new class of nanomaterials, hold great promise for various optoelectronic devices. In the past few years, tremendous progress has been achieved in the development of efficient and stable AIMHP nanomaterials for optical property studies and related applications. Here, we offer a critical overview on the unique merits and the state-of-the-art design of AIMHP using different composition strategies. Then, the effects of material compositions, dimensionality, morphologies and structures on optical properties are summarized. We also comprehensively present recent advances in the development AIMHP nanomaterials for practical applications including solar cells, light-emitting diodes, lasers and photodetectors. Lastly, the critical challenges and future opportunities in this emerging field are highlighted.
|
Keywords
inorganic perovskite
nano-structure
materials design
optical properties
applications
|
Corresponding Author(s):
Xia Liu,Shenlong Zhao,Cong Wang
|
Just Accepted Date: 30 October 2020
Issue Date: 25 November 2020
|
|
1 |
H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, and A. D. Mohite, High-efficiency twodimensional Ruddlesden-popper perovskite solar cells, Nature 536(7616), 312 (2016)
https://doi.org/10.1038/nature18306
|
2 |
Y. Han, H. Zhao, C. Y. Duan, S. M. Yang, Z. Yang, Z. K. Liu, and S. Z. Liu, Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%, Adv. Funct. Mater. 30(12), 1909972 (2020)
https://doi.org/10.1002/adfm.201909972
|
3 |
Z. Z. Li, F. G. Zhou, Q. Wang, L. M. Ding, and Z. W. Jin, Approaches for thermodynamically stabilized CsPbI3 solar cells, Nano Energy 71, 104634 (2020)
https://doi.org/10.1016/j.nanoen.2020.104634
|
4 |
J. Xing, F. Yan, Y. W. Zhao, S. Chen, H. K. Yu, Q. Zhang, R. G. Zeng, X. W. Demir, X. S. Sun, and Q. H. Xiong, High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles, ACS Nano 10(7), 6623 (2016)
https://doi.org/10.1021/acsnano.6b01540
|
5 |
K. B. Lin, J. Xing, L. N. Quan, F. P. G. Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent, Nature 562(7726), 245 (2018)
https://doi.org/10.1038/s41586-018-0575-3
|
6 |
H. Cho, Y. H. Kim, C. Wolf, H. D. Lee, and T. W. Lee, Improving the stability of metal halide perovskite materials and light-emitting diodes, Adv. Mater. 30(42), 1704587 (2018)
https://doi.org/10.1002/adma.201704587
|
7 |
H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater. 14(6), 636 (2015)
https://doi.org/10.1038/nmat4271
|
8 |
N. Zhang, Y. B. Fan, K. Y. Wang, Z. Y. Gu, Y. H. Wang, L. Ge, S. M. Xiao, and Q. H. Song, All-optical control of lead halide perovskite microlasers, Nat. Commun. 10(1), 1770 (2019)
https://doi.org/10.1038/s41467-019-09876-6
|
9 |
J. Chen, W. N. Du, J. W. Shi, M. L. Li, Y. Wang, Q. Zhang, and X. F. Liu, Perovskite quantum dot lasers, InfoMat 2(1), 170 (2019)
https://doi.org/10.1002/inf2.12051
|
10 |
X. H. Cheng, Y. Yuan, L. Jing, T. L. Zhou, Z. X. Li, Z. W. Peng, Q. Yao, J. Zhang, and J. X. Ding, Nucleationcontrolled growth of superior long oriented CsPbBr3 microrod single crystals for high detectivity photodetectors, J. Mater. Chem. C 7(45), 14188 (2019)
https://doi.org/10.1039/C9TC05333F
|
11 |
J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors, Nat Electron 1(7), 404 (2018)
https://doi.org/10.1038/s41928-018-0101-5
|
12 |
J. P. Deng, J. L. Li, Z. Yang, and M. Q. Wang, Allinorganic lead halide perovskites: A promising choice for photovoltaics and detectors, J. Mater. Chem. C 7(40), 12415 (2019)
https://doi.org/10.1039/C9TC04164H
|
13 |
W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Light-activated photocurrent degradation and selfhealing in perovskite solar cell, Nat. Commun. 7(1), 11574 (2016)
https://doi.org/10.1038/ncomms11574
|
14 |
G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, and C. Ducati, In situ observation of heat-induced degradation of perovskite solar cells, Nat. Energy 1(2), 15012 (2016)
https://doi.org/10.1038/nenergy.2015.12
|
15 |
Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chem. Mater. 28(1), 284 (2016)
https://doi.org/10.1021/acs.chemmater.5b04107
|
16 |
S. Yang, Y. Wang, P. Liu, Y. B. Cheng, H. J. Zhao, and H. G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy 1(2), 15016 (2016)
https://doi.org/10.1038/nenergy.2015.16
|
17 |
Y. C. Zhao, J. Wei, H. Li, Y. Yan, W. K. Zhou, D. P. Yu, and Q. A. Zhao, Polymer scaffold for self-healing perovskite solar cells, Nat. Commun. 7(1), 10228 (2016)
https://doi.org/10.1038/ncomms10228
|
18 |
J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol. 11(1), 75 (2016)
https://doi.org/10.1038/nnano.2015.230
|
19 |
L. Protesescu, S. Yakunin, I. Maryna, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)
https://doi.org/10.1021/nl5048779
|
20 |
D. Wang, W. J. Li, Z. B. Du, G. D. Li, W. H. Sun, J. H. Wu, and L. Z. Zhang, CoBr2-doping-induced efficiency improvement of CsPbBr3 planar perovskite solar cells, J. Mater. Chem. C 8(5), 1649 (2020)
https://doi.org/10.1039/C9TC05679C
|
21 |
W. Z. Lv, L. Li, M. G. Li, L. G. Xu, W. Huang, and R. F. Chen, Self-assembly of completely inorganic perovskite nanocrystals with improved stability by anchoring on kaolinite lamellae, Adv. Opt. Mater. 8(6), 1901485 (2020)
https://doi.org/10.1002/adom.201901485
|
22 |
J. L. Duan, Y. D. Wang, X. Y. Yang, and Q. W. Tang, Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells, Angew. Chem. Int. Ed. 59(11), 4391 (2020)
https://doi.org/10.1002/anie.202000199
|
23 |
S. T. Ha, R. Su, J. Xing, Q. Zhang, and Q. H. Xiong, Metal halide perovskite nanomaterials: Synthesis and applications, Chem. Sci. 8(4), 2522 (2017)
https://doi.org/10.1039/C6SC04474C
|
24 |
D. D. Zhang, S. W. Eaton, Y. Yu, L. T. Dou, and P. D. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires, J. Am. Chem. Soc. 137(29), 9230 (2015)
https://doi.org/10.1021/jacs.5b05404
|
25 |
D. D. Zhang, Y. Yu, Y. Bekenstein, A. B. Wong, A. P. Alivisatos, and P. D. Yang, Ultrathin colloidal cesium lead halide perovskite nanowires, J. Am. Chem. Soc. 138(40), 13155 (2016)
https://doi.org/10.1021/jacs.6b08373
|
26 |
M. Imran, F. Di Stasio, Z. Dang, C. Canale, A. H. Khan, J. Shamsi, R. Brescia, M. Prato, and L. Manna, Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime, Chem. Mater. 28(18), 6450 (2016)
https://doi.org/10.1021/acs.chemmater.6b03081
|
27 |
J. Chen, Y. P. Fu, L. Samad, L. N. Dang, Y. H. Zhao, S. H. Shen, L. J. Guo, and S. Jin, Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I), Nano Lett. 17(1), 460 (2017)
https://doi.org/10.1021/acs.nanolett.6b04450
|
28 |
Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, J. Am. Chem. Soc. 137(51), 16008 (2015)
https://doi.org/10.1021/jacs.5b11199
|
29 |
J. Shamsi, Z. Y. Dang, P. Bianchini, C. Canale, F. Di Stasio, R. Brescia, M. Prato, and L. Manna, Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range, J. Am. Chem. Soc. 138(23), 7240 (2016)
https://doi.org/10.1021/jacs.6b03166
|
30 |
J. Chen, D. Morrow, Y. P. Fu, W. H. Zheng, Y. Z. Zhao, L. N. Dang, M. J. Stolt, D. D. Kohler, X. X. Wang, K. J. Czech, M. P. Hautzinger, S. H. Shen, L. J. Guo, A. L. Pan, J. C. Wright, and S. Jin, Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3), J. Am. Chem. Soc. 139(38), 13525 (2017)
https://doi.org/10.1021/jacs.7b07506
|
31 |
A. Dutta, R. K. Behera, P. Pal, S. Baitalik, and N. Pradhan, Near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach, Angew. Chem. Int. Ed. 131(17), 5608 (2019)
https://doi.org/10.1002/ange.201900374
|
32 |
G. C. Xing, B. Wu, X. Y. Wu, M. J. Li, B. Du, Q. Wei, J. Guo, E. K. L. Yeow, T. C. Sum, and W. Huang, Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence, Nat. Commun. 8(1), 14558 (2017)
https://doi.org/10.1038/ncomms14558
|
33 |
J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, Allinorganic CsPbX3 perovskite solar cells: Progress and prospects, Angew. Chem. Int. Ed. 58(44), 15596 (2019)
https://doi.org/10.1002/anie.201901081
|
34 |
L. Huang, Q. G. Gao, L. D. Sun, H. Dong, S. Shi, T. Cai, Q. Liao, and C. H. Yan, Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance, Adv. Mater. 30(27), 1800596 (2018)
https://doi.org/10.1002/adma.201800596
|
35 |
H. W. Huang, M. Liu, J. Li, L. H. Luo, J. T. Zhao, Z. L. Luo, X. P. Wang, Z. Z. Ye, H. P. He, and J. Zeng, Atomically thin cesium lead bromide perovskite quantum wires with high luminescence, Nanoscale 9(1), 104 (2017)
https://doi.org/10.1039/C6NR08250E
|
36 |
K. Wang, Z. W. Jin, H. Liang, H. Bian, D. L. Bai, H. R. Wang, J. R. Zhang, Q. Wang, and S. Z. Liu, All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%, Nat. Commun. 9(1), 4544 (2018)
https://doi.org/10.1038/s41467-018-07485-3
|
37 |
Y. Z. Hu, W. C. Zhang, Y. Ye, Z. Y. Zhao, and C. Liu, Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion, ACS Appl. Nano Mater. 3(1), 850 (2020)
https://doi.org/10.1021/acsanm.9b02362
|
38 |
A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. X. Wang, I. Datta, M. Lipson, A. L. Pan, and X. Y. Zhu, How lasing happens in CsPbBr3 perovskite nanowires, Nat. Commun. 10(1), 265 (2019)
https://doi.org/10.1038/s41467-018-07972-7
|
39 |
M. J. Adams, D. Jevtics, M. J. Strain, I. D. Henning, and A. Hurtado, High-frequency dynamics of evanescentlycoupled nanowire lasers, Sci. Rep. 9(1), 6126 (2019)
https://doi.org/10.1038/s41598-019-42526-x
|
40 |
Z. G. Xiao, R. A. Kerner, L. F. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, and B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics 11(2), 108 (2017)
https://doi.org/10.1038/nphoton.2016.269
|
41 |
Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H. L. Yip, and Y. Cao, Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%, Nat. Commun. 10(1), 1027 (2019)
https://doi.org/10.1038/s41467-019-09011-5
|
42 |
Q. S. Chen, J. Wu, X. Y. Ou, B. L. Huang, J. Almutlaq, A. A. Zhumekenov, X. W. Guan, S. Y. Han, L. L. Liang, Z. G. Yi, J. Li, X. J. Xie, Y. Wang, Y. Li, D. Y. Fan, B. L. T. Daniel, H. A. Angelo, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. H. Yang, W. Huang, and X. G. Liu, All-inorganic perovskite nanocrystal scintillators, Nature 561(7721), 88 (2018)
https://doi.org/10.1038/s41586-018-0451-1
|
43 |
A. Waleed, M. M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, and Z. Fan, All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors, Nano Lett. 17(8), 4951 (2017)
https://doi.org/10.1021/acs.nanolett.7b02101
|
44 |
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, and J. J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nat. Photonics 12(11), 681 (2018)
https://doi.org/10.1038/s41566-018-0260-y
|
45 |
Q. S. Sun, C. L. Ni, Y. C. Yu, S. Attique, S. Wei, Z. Ci, J. Wang, and S. Yang, Design principle of all-inorganic halide perovskite-related nanocrystals, J. Mater. Chem. C 6(46), 12484 (2018)
https://doi.org/10.1039/C8TC04254C
|
46 |
T. Chen, Y. Q. Xu, Z. X. Xie, W. H. Jiang, L. J. Wang, and W. Jiang, Ionic liquid assisted preparation and modulation of the photoluminescence kinetics for highly efficient CsPbX3 nanocrystals with improved stability, Nanoscale 12(17), 9569 (2020)
https://doi.org/10.1039/D0NR00579G
|
47 |
B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals, Angew. Chem. Int. Ed. 56(41), 12471 (2017)
https://doi.org/10.1002/anie.201704739
|
48 |
Z. H. Shen, S. L. Zhao, D. D. Song, Z. Xu, B. Qiao, P. J. Song, Q. Y. Bai, J. Y. Cao, G. Q. Zhang, and W. Swelm, Improving the quality and luminescence performance of all-inorganic perovskite nanomaterials for lightemitting devices by surface engineering, Small 16(26), 1907089 (2020)
https://doi.org/10.1002/smll.201907089
|
49 |
J. T. Gan, J. X. He, R. L. Z. Hoye, A. Mavlonov, F. Raziq, J. L. Macmanusdriscoll, X. Q. Wu, S. Li, X. T. Zu, Y. Q. Zhan, X. Y. Zhang, and L. Qiao, α-CsPbI3 colloidal quantum dots: Synthesis, photodynamics and photovoltaic applications, ACS Energy Lett. 4(6), 1308 (2019)
https://doi.org/10.1021/acsenergylett.9b00634
|
50 |
P. C. Zhu and J. Zhu, Low-dimensional metal halide perovskites and related optoelectronic applications, InfoMat 2(2), 341 (2020)
https://doi.org/10.1002/inf2.12086
|
51 |
X. He, Y. Qiu, and S. Yang, Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials, Adv. Mater. 29(32), 1700775 (2017)
https://doi.org/10.1002/adma.201700775
|
52 |
H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, and A. L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance, ACS Energy Lett. 2(9), 2071 (2017)
https://doi.org/10.1021/acsenergylett.7b00547
|
53 |
L. S. Rao, Y. Tang, C. J. Song, K. Xu, E. T. Vickers, S. Bonabi Naghadeh, X. R. Ding, Z. T. Li, and J. Z. Zhang, Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication, Chem. Mater. 31(2), 365 (2019)
https://doi.org/10.1021/acs.chemmater.8b03298
|
54 |
A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots, Angew. Chem. Int. Ed. 54(51), 15424 (2015)
https://doi.org/10.1002/anie.201508276
|
55 |
G. P. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang, Z. Zhang, W. Zhang, and Y. Jiang, Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white lightemitting diodes, Adv. Funct. Mater. 26(46), 8478 (2016)
https://doi.org/10.1002/adfm.201603734
|
56 |
W. Zhang, G. E. Eperon, and H. J. Snaith, Metal halide perovskites for energy applications, Nat. Energy 1(6), 16048 (2016)
https://doi.org/10.1038/nenergy.2016.48
|
57 |
Y. Tong, E. Bladt, M. F. Aygüler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, and J. Feldmann, Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication, Angew. Chem. Int. Ed. 55(44), 13887 (2016)
https://doi.org/10.1002/anie.201605909
|
58 |
L. Protesescu, S. Yakunin, O. Nazarenko, D. Dirin, and M. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling, ACS Appl. Nano Mater. 1(3), 1300 (2018)
https://doi.org/10.1021/acsanm.8b00038
|
59 |
A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc. 138(7), 2138 (2016)
https://doi.org/10.1021/jacs.5b13294
|
60 |
G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Fast anionexchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I), Nano Lett. 15(8), 5635 (2015)
https://doi.org/10.1021/acs.nanolett.5b02404
|
61 |
Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, J. Am. Chem. Soc. 137(32), 10276 (2015)
https://doi.org/10.1021/jacs.5b05602
|
62 |
T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals, J. Am. Chem. Soc. 138(9), 2941 (2016)
https://doi.org/10.1021/jacs.5b13470
|
63 |
X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song, and H. B. Zeng, CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Adv. Funct. Mater. 26(15), 2435 (2016)
https://doi.org/10.1002/adfm.201600109
|
64 |
S. B. Sun, D. Yuan, Y. Xu, A. F. Wang, and Z. T. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature, ACS Nano 10(3), 3648 (2016)
https://doi.org/10.1021/acsnano.5b08193
|
65 |
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals, ACS Nano 10(2), 2071 (2016)
https://doi.org/10.1021/acsnano.5b06295
|
66 |
A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, Quantum dot-induced phase stabilization of-CsPbI3 perovskite for high-efficiency photovoltaics, Science 354(6308), 92 (2016)
https://doi.org/10.1126/science.aag2700
|
67 |
S. Ye, M. J. Zhao, J. Song, and J. Qu, Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane, Nano Res. 11(9), 4654 (2018)
https://doi.org/10.1007/s12274-018-2046-4
|
68 |
H. G. Lu, Y. Tang, L. S. Rao, Z. T. Li, X. R. Ding, C. J. Song, and B. H. Yu, Investigating the transformation of CsPbBr3 nanocrystals into highly stable CsPbBr3/Cs4PbBr6 nanocrystals using ethyl acetate in a microchannel reactor, Nanotechnology 30(29), 295603 (2019)
https://doi.org/10.1088/1361-6528/ab15c7
|
69 |
X. S. Tang, J. Yang, S. Q. Li, W. W. Chen, Z. P. Hu, and J. Qiu, CsPbBr3/CdS core/shell structure quantum dots for inverted light-emitting diodes application, Front. Chem. 7, 499 (2019)
https://doi.org/10.3389/fchem.2019.00499
|
70 |
L. J. Chen, L. Wan, X. D. Li, W. X. Zhang, S. Fu, Y. M. Wang, S. Li, H. Q. Wang, W. J. Song, and J. S. Fang, Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation, Chem. Mater. 31(21), 9032 (2019)
https://doi.org/10.1021/acs.chemmater.9b03277
|
71 |
H. R. Wang, H. Bian, Z. W. Jin, H. Zhang, L. Liang, J. L. Wen, Q. Wang, L. M. Ding, and S. Z. F. Liu, Cesium lead mixed-halide perovskites for low energy loss solar cells with efficiency beyond 17%, Chem. Mater. 31(16), 6231 (2019)
https://doi.org/10.1021/acs.chemmater.9b02248
|
72 |
Q. Zhao, A. Hazarika, L. T. Schelhas, J. Liu, E. A. Gaulding, G. R. Li, M. H. Zhang, M. F. Toney, P. C. Sercel, and J. M. Luther, Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: Negative surface energy for stabilization, ACS Energy Lett. 5(1), 238 (2020)
https://doi.org/10.1021/acsenergylett.9b02395
|
73 |
H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater. 14(6), 636 (2015)
https://doi.org/10.1038/nmat4271
|
74 |
S. Seth and A. Samanta, A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition, Sci. Rep. 6(1), 37693 (2016)
https://doi.org/10.1038/srep37693
|
75 |
X. H. Zhang, S. L. Chen, X. Wang, and A. L. Pan, Controlled synthesis and photonics applications of metal halide perovskite nanowires, Small Methods 3(1), 1800294 (2019)
https://doi.org/10.1002/smtd.201800294
|
76 |
Q. Zhang, R. Su, W. N. Du, X. F. Liu, L. Y. Zhao, S. T. Ha, and Q. H. Xiong, Advances in small perovskite-based lasers, Small Methods 1(9), 1700163 (2017)
https://doi.org/10.1002/smtd.201700163
|
77 |
A. Z. Pan, M. Jurow, Y. R. Zhao, F. Qiu, D. Liu, J. Yang, J. J. Urban, L. He, and Y. Liu, Templated self-assembly of one-dimensional CsPbX3 perovskite nanocrystal superlattices, Nanoscale 9(45), 17688 (2017)
https://doi.org/10.1039/C7NR06579E
|
78 |
D. Amgar, A. Stern, D. Rotem, D. Porath, and L. Etgar, Tunable length and optical properties of few units cell CsPbX3 (X=Cl, Br, I) nanowires, Nano Lett. 17(2), 1007 (2017)
https://doi.org/10.1021/acs.nanolett.6b04381
|
79 |
M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire, Adv. Funct. Mater. 27(23), 1701121 (2017)
https://doi.org/10.1002/adfm.201701121
|
80 |
D. D. Zhang, Y. M. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. L. Lai, A. P. Alivisatos, S. R. Leone, and P. D. Yang, Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions, J. Am. Chem. Soc. 138(23), 7236 (2016)
https://doi.org/10.1021/jacs.6b03134
|
81 |
S. W. Eatona, M. L. Lai, N. A. Gibson, A. B. Wong, L. T. Dou, J. Ma, L. W. Wang, S. R. Leonea, and P. D. Yang, Lasing in robust cesium lead halide perovskite nanowires, Proc. Natl. Acad. Sci. USA 113(8), 1993 (2016)
https://doi.org/10.1073/pnas.1600789113
|
82 |
J. K. Sun, S. Huang, X. Z. Liu, Q. Xu, Q. H. Zhang, W. J. Jiang, D. J. Xue, J. C. Xu, J. Y. Ma, J. Ding, Q. Q. Ge, L. Gu, X. H. Fang, H. Z. Zhong, J. S. Hu, and L. J. Wan, Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires, J. Am. Chem. Soc. 140(37), 11705 (2018)
https://doi.org/10.1021/jacs.8b05949
|
83 |
Y. P. Fu, H. M. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Y. Zhu, and S. Jin, Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I), ACS Nano 10(8), 7963 (2016)
https://doi.org/10.1021/acsnano.6b03916
|
84 |
Y. Gao, L. Y. Zhao, Q. Y. Shang, Y. G. Zhong, Z. Liu, J. Chen, Z. P. Zhang, J. Shi, W. N. Du, Y. F. Zhang, S. L. Chen, P. Gao, X. F. Liu, X. N. Wang, and Q. Zhang, Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy, Adv. Mater. 30(31), 1801805 (2018)
https://doi.org/10.1002/adma.201801805
|
85 |
Y. G. Wang, M. Yasar, Z. Y. Luo, S. S. Zhou, Y. W. Yu, H. Q. Li, R. Yang, X. X. Wang, A. L. Pan, L. Gan, and T. Y. Zhai, Temperature difference triggering controlled growth of all-inorganic perovskite nanowire arrays in air, Small 14(41), 1803010 (2018)
https://doi.org/10.1002/smll.201803010
|
86 |
K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, and J. K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers, J. Phys. Chem. Lett. 7(18), 3703 (2016)
https://doi.org/10.1021/acs.jpclett.6b01821
|
87 |
H. Zhou, S. P. Yuan, X. X. Wang, T. Xu, X. Wang, H. L. Li, W. H. Zheng, P. Fan, Y. Y. Li, L. T. Sun, and A. L. Pan, Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section, ACS Nano 11(2), 1189 (2017)
https://doi.org/10.1021/acsnano.6b07374
|
88 |
J. Pal, S. Manna, A. Mondal, S. Das, K. V. Adarsh, and A. Nag, Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: Lead-free perovskites, Angew. Chem. Int. Ed. 56(45), 14187 (2017)
https://doi.org/10.1002/anie.201709040
|
89 |
Y. Tong, B. J. Bohn, E. Bladt, K. Wang, P. Muller-Buschbaum, S. Bals, A. S. Urban, L. Polavarapu, and J. Feldmann, From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly, Angew. Chem. Int. Ed. 56(44), 13887 (2017)
https://doi.org/10.1002/anie.201707224
|
90 |
M. Shoaib, X. H. Zhang, X. X. Wang, H. Zhou, T. Xu, X. Wang, X. L. Hu, H. W. Liu, X. P. Fan, W. H. Zheng, T. F. Yang, S. Z. Yang, Q. L. Zhang, X. L. Zhu, L. T. Sun, and A. L. Pan, Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors, J. Am. Chem. Soc. 139(44), 15592 (2017)
https://doi.org/10.1021/jacs.7b08818
|
91 |
L. Huang, Q. G. Gao, L. D. Sun, H. Dong, S. Shi, T. Cai, Q. Liao, and C. H. Yan, Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance, Adv. Mater. 30(27), 1800596 (2018)
https://doi.org/10.1002/adma.201800596
|
92 |
J. Liu, K. Song, Y. Shin, X. Liu, J. Chen, K. X. Yao, J. Pan, C. Yang, J. Yin, L.J. Xu, H. Yang, A. M. El-Zohry, B. Xin, S. Mitra, M. N. Hedhili, I. S. Roqan, O. F. Mohammed, Y. Han, and O. M. Bakr, Light-induced selfassembly of cubic CsPbBr3 perovskite nanocrystals into nanowires, Chem. Mater. 31(17), 6642 (2019)
https://doi.org/10.1021/acs.chemmater.9b00680
|
93 |
P. L. Li, D. Yang, Y. S. Tan, M. H. Cao, Q. H. Zhong, M. Chen, H. C. Hu, B. Q. Sun, Y. Xu, and Q. Zhang, Consecutive interfacial transformation of cesium lead halide nanocubes to ultrathin nanowires with improved stability, ACS Appl. Mater. Interfaces 11(3), 3351 (2019)
https://doi.org/10.1021/acsami.8b19219
|
94 |
D. Yang, P. L. Li, Y. T. Zou, M. H. Cao, H. C. Hu, Q. X. Zhong, J. X. Hu, B. Q. Sun, S. Duhm, Y. Xu, and Q. Zhang, Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications, Chem. Mater. 31(5), 1575 (2019)
https://doi.org/10.1021/acs.chemmater.8b04651
|
95 |
L. Zhang, Q. Sun, Y. Xu, L. Han, Q. Wang, Y. Yu, Z. Jin, S. Yang, and Z. Ci, Self-assembled template-confined growth of ultrathin CsPbBr3 nanowires, Appl. Mater. Today. 18, 100449 (2019)
https://doi.org/10.1016/j.apmt.2019.100449
|
96 |
L. Z. He, S. Pan, Z. Q. Lin, and J. Peng, Rapid route to polar solvent-directed growth of perovskite nanowires, ACS Appl. Nano Mater. 2(12), 7910 (2019)
https://doi.org/10.1021/acsanm.9b01922
|
97 |
J. Chen, Z. Y. Luo, Y. P. Fu, X. X. Wang, K. J. Czech, S. H. Shen, L. J. Guo, J. C. Wright, A. L. Pan, and S. Jin, Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X=Br, I) nanowires, ACS Energy Lett. 4(5), 1045 (2019)
https://doi.org/10.1021/acsenergylett.9b00543
|
98 |
Y. Meng, C. Y. Lan, F. Z. Li, S. P. Yip, R. J. Wei, X. L. Kang, X. M. Bu, R. T. Dong, H. Zhang, and J. C. Ho, Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics, ACS Nano 13(5), 6060 (2019)
https://doi.org/10.1021/acsnano.9b02379
|
99 |
Z. Z. Zhang, Y. X. Liu, C. Geng, S. S. Shi, X. S. Zhang, W. G. Bi, and S. Xu, Rapid synthesis of quantum-confined CsPbBr3 perovskite nanowires using a microfluidic reactor, Nanoscale 11(40), 18790 (2019)
https://doi.org/10.1039/C9NR06726D
|
100 |
H. Liu, M. Siron, M. Y. Gao, D. Lu, Y. Bekenstein, D. D. Zhang, L. T. Dou, A. P. Alivisatos, and P. D. Yang, Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly, Nano Res. 13(5), 1453 (2020)
https://doi.org/10.1007/s12274-020-2717-9
|
101 |
H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, S. Alexander, A. S. Urban, and A. L. Rogach, Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications, NPG Asia Mater. 8(11), e328 (2016)
https://doi.org/10.1038/am.2016.167
|
102 |
M. C. Weidman, M. Seitz, S. D. Stranks, and W. A. Tisdale, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition, ACS Nano 10(8), 7830 (2016)
https://doi.org/10.1021/acsnano.6b03496
|
103 |
M. C. Weidman, A. J. Goodman, and W. A. Tisdale, Colloidal halide perovskite nanoplatelets: An exciting new class of semiconductor nanomaterials, Chem. Mater. 29(12), 5019 (2017)
https://doi.org/10.1021/acs.chemmater.7b01384
|
104 |
Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control, J. Am. Chem. Soc. 138(3), 1010 (2016)
https://doi.org/10.1021/jacs.5b12124
|
105 |
K. H. Wang, L. Wu, L. Li, H. B. Yao, H. S. Qian, and S. H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange, Angew. Chem. Int. Ed. 128(29), 8468 (2016)
https://doi.org/10.1002/ange.201602787
|
106 |
Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong, High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets, Adv. Funct. Mater. 26(34), 6238 (2016)
https://doi.org/10.1002/adfm.201601690
|
107 |
L. T. Dou, Emerging two-dimensional halide perovskite nanomaterials, J. Mater. Chem. C 5(43), 11165 (2017)
https://doi.org/10.1039/C7TC02863F
|
108 |
J. Shamsi, Z. Y. Dang, P. Bianchini, C. Canale, F. Di Stasio, R. Brescia, M. Prato, and L. Manna, Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range, J. Am. Chem. Soc. 138(23), 7240 (2016)
https://doi.org/10.1021/jacs.6b03166
|
109 |
N. N. Wang, L. Cheng, R. Ge, S. T. Zhang, Y. F. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Q. Wei, Q. Guo, Y. Ke, M. T. Yu, Y. Z. Jin, Y. Liu, Q. Q. Ding, D. W. Di, L. Yang, G. H. Xing, H. Tian, C. H. Jin, F. Gao, R. H. Friend, J. P. Wang, and W. Huang, Perovskite lightemitting diodes based on solution-processed self-organized multiple quantum wells, Nat. Photonics 10(11), 699 (2016)
https://doi.org/10.1038/nphoton.2016.185
|
110 |
S. T. Zhang, C. Yi, N. N. Wang, Y. Sun, W. Zou, Y. Q. Wei, Y. Cao, Y. F. Miao, R. Z. Li, Y. Yin, N. Zhao, J. P. Wang, and W. Huang, Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells, Adv. Mater. 29(22), 1606600 (2017)
https://doi.org/10.1002/adma.201606600
|
111 |
L. T. Dou, M. L. Lai, C. S. Kley, Y. M. Yang, C. G. Bischak, D. D. Zhang, S. W. Eaton, N. S. Ginsberg, and P. D. Yang, Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange, Proc. Natl. Acad. Sci. USA 114(28), 7216 (2017)
https://doi.org/10.1073/pnas.1703860114
|
112 |
E. Z. Shi, Y. Gao, B. P. Finkenauer, A. H. C. Akriti, and L. T. Dou, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev. 47(16), 6046 (2018)
https://doi.org/10.1039/C7CS00886D
|
113 |
A. B. Wong, Y. Bekenstein, J. Kang, C. S. Kley, D. Kim, N. A. Gibson, D. D. Zhang, Y. Yu, S. R. Leone, L. W. Wang, A. P. Alivisatos, and P. D. Yang, Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: Lessons for reducing defect density and improving stability, Nano Lett. 18(3), 2060 (2018)
https://doi.org/10.1021/acs.nanolett.8b00077
|
114 |
L. Y. Lian, G. M. Zhai, F. Cheng, Y. Xia, M. Y. Zheng, J. P. Ke, M. Y. Gao, H. Liu, D. L. Zhang, L. Y. Li, J. B. Gao, J. Tang, and J. B. Zhang, Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets, CrystEngComm 20(46), 7473 (2018)
https://doi.org/10.1039/C8CE01060A
|
115 |
L. L. Wang, P. Chen, P. S. Kuttipillai, I. King, R. Staples, K. Sun, and R. R. Lunt, Epitaxial stabilization of tetragonal cesium tin iodide, ACS Appl. Mater. Interfaces 11(35), 32076 (2019)
https://doi.org/10.1021/acsami.9b05592
|
116 |
Y. P. Fu, H. M. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, and S. Jin, Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties, Nat. Rev. Mater. 4(3), 169 (2019)
https://doi.org/10.1038/s41578-019-0080-9
|
117 |
R. H. Liu, H. Zhou, Z. N. Song, X. H. Yang, D. J. Wu, Z. H. Song, H. Wang, and Y. F. Yan, Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors, Nanoscale 11(19), 9302 (2019)
https://doi.org/10.1039/C9NR03213D
|
118 |
J. C. Hua, X. Deng, C. Niu, F. Z. Huang, Y. Peng, W. N. Li, Z. L. Ku, and Y. B. Cheng, A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation, RSC Advances 10(15), 8905 (2020)
https://doi.org/10.1039/D0RA00446D
|
119 |
C. X. Huo, C. F. Fong, M. R. Amara, Y. Q. Huang, B. Chen, H. Zhang, L. J. Guo, H. J. Li, W. Huang, C. Diederichs, and Q. H. Xiong, Optical spectroscopy of single colloidal CsPbBr3 perovskite nanoplatelets, Nano Lett. 20(5), 3673 (2020)
https://doi.org/10.1021/acs.nanolett.0c00611
|
120 |
H. Gao, W. J. Feng, H. W. Liu, S. W. Liu, Z. D. Wang, D. Yao, Y. Liu, D. K. Teng, B. Yang, and H. Zhang, Cesiumlead bromide perovskite nanoribbons with two-unit-cell thickness and large lateral dimension for deep-blue light emission, ACS Appl. Nano Mater. 3(5), 4826 (2020)
https://doi.org/10.1021/acsanm.0c00873
|
121 |
A. Z. Pan, B. He, X. Y. Fan, Z. K. Liu, J. J. Urban, A. P. Alivisatos, L. He, and Y. Liu, Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors, ACS Nano 10(8), 7943 (2016)
https://doi.org/10.1021/acsnano.6b03863
|
122 |
X. M. Li, F. Cao, D. J. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, and H. Zeng, All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications, Small 13(9), 1603996 (2017)
https://doi.org/10.1002/smll.201603996
|
123 |
Z. K. Wen, W. Zhai, C. Liu, J. Lin, C. Yu, Y. Huang, J. Zhang, and C. Tang, Controllable synthesis of CsPbI3 nanorods with tunable photoluminescence emission, RSC Advances 9(43), 24928 (2019)
https://doi.org/10.1039/C9RA04600C
|
124 |
M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science 358(6364), 745 (2017)
https://doi.org/10.1126/science.aam7093
|
125 |
X. Y. Lao, X. Y. Li, H. Agren, and G. Y. Chen, Highly controllable synthesis and DFT calculations of double/triple-Halide CsPbX3 (X=Cl, Br, I) perovskite quantum dots: Application to light-emitting diodes, Nanomaterials (Basel) 9(2), 172 (2019)
https://doi.org/10.3390/nano9020172
|
126 |
E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman, I. G. Scheblykin, E. L. Unger, and E. Joselevich, Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires, Nat. Commun. 11(1), 489 (2020)
https://doi.org/10.1038/s41467-020-14365-2
|
127 |
N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
https://doi.org/10.1007/s11467-013-0305-0
|
128 |
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
|
129 |
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
|
130 |
Z. Z. Yan, Z. H. Jiang, J. P. Lu, and Z. H. Ni, Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure, Front. Phys. 13(4), 138115 (2018)
https://doi.org/10.1007/s11467-018-0785-z
|
131 |
S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
https://doi.org/10.1007/s11467-019-0901-8
|
132 |
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
|
133 |
B. W. Zhang, Y. X. Wang, S. L. Chou, H. K. Liu, and S. X. Dou, Fabrication of superior single-atom catalysts toward diverse electrochemical reactions, Small Methods 3(9), 1800497 (2019)
https://doi.org/10.1002/smtd.201800497
|
134 |
B. W. Zhang, T. Sheng, Y. X. Wang, S. L. Chou, K. Davey, S. X. Dou, and S. Z. Qiao, Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur Interactions, Angew. Chem. Int. Ed. 58(5), 1484 (2019)
https://doi.org/10.1002/anie.201811080
|
135 |
Z. X. Chen, Y. J. Zhang, S. Chu, R. Sun, J. Wang, J. P. Chen, B. Wei, X. Zhang, W. H. Zhou, Y. M. Shi, and Z. Wang, Grain boundary induced ultralow threshold random laser in a single GaTe flake, ACS Appl. Mater. Interfaces 12(20), 23323 (2020)
https://doi.org/10.1021/acsami.0c03419
|
136 |
J. Wang, X. Z. Li, B. Wei, R. Sun, W. Yu, H. Y. Hoh, H. M. Xu, J. Li, X. B. Ge, Z. X. Chen, C. L. Su, and Z. C. Wang, Activating basal planes of NiPS3 for hydrogen evolution by nonmetal heteroatom doping, Adv. Funct. Mater. 30(12), 1908708 (2020)
https://doi.org/10.1002/adfm.201908708
|
137 |
Z. T. Li, C. J. Song, L. S. Rao, H. G. Lu, C. M. Yan, K. Cao, X. R. Ding, B. H. Yu, and Y. Tang, Synthesis of highly photoluminescent all-inorganic CsPbX3 nanocrystals via interfacial anion exchange reactions, Nanomaterials (Basel) 9(9), 1296 (2019)
https://doi.org/10.3390/nano9091296
|
138 |
C. Chen, L. W. Zhang, T. L. Shi, G. L. Liao, and Z. R. Tang, Controllable synthesis of all inorganic lead halide perovskite nanocrystals with various appearances in multiligand reaction system, Nanomaterials (Basel) 9(12), 1751 (2019)
https://doi.org/10.3390/nano9121751
|
139 |
J. Y. Liu, K. Q. Chen, S. A. Khan, B. Shabbir, Y. P. Zhang, Q. Khan, and Q. L. Bao, Synthesis and optical applications of low dimensional metal-halide perovskites, Nanotechnology 31(15), 152002 (2020)
https://doi.org/10.1088/1361-6528/ab5a19
|
140 |
B. Xin, Y. Pak, S. Mitra, D. Almalawi, N. Alwadai, Y. H. Zhang, and I. S. Roqan, Self-patterned CsPbBr3 nanocrystals for high-performance optoelectronics, ACS Appl. Mater. Interfaces 11(5), 5223 (2019)
https://doi.org/10.1021/acsami.8b17249
|
141 |
M. Kulbak, D. Cahen, and G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells, J. Phys. Chem. Lett. 6(13), 2452 (2015)
https://doi.org/10.1021/acs.jpclett.5b00968
|
142 |
J. Liang, C. X. Wang, Y. R. Wang, Z. R. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, and J. Liu, All-inorganic perovskite solar cells, J. Am. Chem. Soc. 138(49), 15829 (2016)
https://doi.org/10.1021/jacs.6b10227
|
143 |
R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells, Adv. Energy Mater. 6(8), 1502458 (2016)
https://doi.org/10.1002/aenm.201502458
|
144 |
W. Li, M. U. Rothmann, A. Liu, Z. Y. Wang, Y. P. Zhang, A. R. Pascoe, J. F. Lu, L. C. Jiang, Y. Chen, F. Y. Huang, Y. Peng, Q. L. Bao, J. Etheridge, U. Bach, and Y. B. Cheng, Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells, Adv. Energy Mater. 7(20), 1700946 (2017)
https://doi.org/10.1002/aenm.201700946
|
145 |
S. J. Zhou, R. Tang, and L. W. Yin, Slow-photon-effectinduced photoelectrical-conversion efficiency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar cells, Adv. Mater. 29(43), 1703682 (2017)
https://doi.org/10.1002/adma.201703682
|
146 |
Y. N. Li, J. L. Duan, Y. Y. Zhao, and Q. Tang, Allinorganic bifacial CsPbBr3 perovskite solar cells with a 98.5%-bifacial factor, Chem. Commun. 54(59), 8237 (2018)
https://doi.org/10.1039/C8CC04271C
|
147 |
K. C. Tang, P. You, and F. Yan, Highly stable allinorganic perovskite solar cells processed at low temperature, Solar RRL 2(8), 1800075 (2018)
https://doi.org/10.1002/solr.201800075
|
148 |
H. Li, G. Q. Tong, T. T. Chen, H. W. Zhu, G. P. Li, Y. J. Chang, L. Wang, and Y. Jiang, Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells, J. Mater. Chem. A 6(29), 14255 (2018)
https://doi.org/10.1039/C8TA03811B
|
149 |
L. Yan, Q. F. Xue, M. Y. Liu, Z. L. Zhu, J. J. Tian, Z. C. Li, Z. Chen, Z. M. Chen, H. Yan, H. L. Yip, and Y. Cao, Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%, Adv. Mater. 30(33), 1802509 (2018)
https://doi.org/10.1002/adma.201802509
|
150 |
C. X. Qian, Z. Y. Deng, K. Yang, J. S. Feng, M. Z. Wang, Z. Yang, S. Z. Liu, and H. J. Feng, Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells, Appl. Phys. Lett. 112(9), 093901 (2018)
https://doi.org/10.1063/1.5019608
|
151 |
Y. Z. Jiang, J. Yuan, Y. X. Ni, J. E. Yang, Y. Wang, T. G. Jiu, M. J. Yuan, and J. Chen, Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics, Joule 2(7), 1356 (2018)
https://doi.org/10.1016/j.joule.2018.05.004
|
152 |
J. Liang, X. Han, J. H. Yang, B. Y. Zhang, Q. Y. Fang, J. Zhang, Q. Ai, M. M. Ogle, T. Terlier, A. A. Martí, and J. Lou, Defect-engineering-enabled highefficiency all-inorganic perovskite solar cells, Adv. Mater. 31(51), 1903448 (2019)
https://doi.org/10.1002/adma.201903448
|
153 |
L. Liang, Z. Z. Li, F. G. Zhou, Q. Wang, H. Zhang, Z. Xu, L. M. Ding, S. Z. Liu, and Z. W. Jin, The humidityinsensitive fabrication of efficient CsPbI3 solar cells in ambient air, J. Mater. Chem. A 7(47), 26776 (2019)
https://doi.org/10.1039/C9TA10597B
|
154 |
J. Li, R. R. Gao, F. Gao, J. Lei, H. X. Wang, X. Wu, J. B. Li, H. Liu, X. D. Hua, and S. Z. Liu, Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation, J. Alloys Compd. 818, 152903 (2020)
https://doi.org/10.1016/j.jallcom.2019.152903
|
155 |
H. Bian, H. R. Wang, Z. Z. Li, F. G. Zhou, Y. K. Xu, H. Zhang, Q. Wang, L. M. Ding, S. Z. Liu, and Z. W. Jin, Unveiling the effects of hydrolysis-derived DMAI/DMAPbI intermediate compound on the performance of CsPbI3 solar cells, Adv. Sci. 7(9), 1902868 (2020)
https://doi.org/10.1002/advs.201902868
|
156 |
Q. S. Zeng, X. Y. Zhang, C. M. Liu, T. L. Feng, Z. L. Chen, W. T. Zheng, H. Zhang, and B. Yang, Inorganic CsPbI2Br perovskite solar cells: The progress and perspective, Sol. RRL 3(1), 1800239 (2019)
https://doi.org/10.1002/solr.201800239
|
157 |
P. P. Li, Y. M. Duan, Y. Lu, N. Xiao, Z. Y. Zeng, S. Q. Xu, and J. J. Zhang, Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs, Nanoscale 12(12), 6630 (2020)
https://doi.org/10.1039/D0NR01207F
|
158 |
L. L. Wang, B. B. Fan, B. Zheng, Z. B. Yang, P. G. Yin, and L. J. Huo, Organic functional materials: Recent advances in all-inorganic perovskite solar cells, Sustain. Energ. Fuels 4(5), 2134 (2020)
https://doi.org/10.1039/D0SE00214C
|
159 |
K. Jiang, J. Wang, F. Wu, Q. F. Xue, Q. Yao, J. Q. Zhang, Y. H. Chen, G. Y. Zhang, Z. L. Zhu, H. Yan, L. N. Zhu, and H. L. Yip, Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells, Adv. Mater. 32(16), 1908011 (2020)
https://doi.org/10.1002/adma.201908011
|
160 |
S. Mahato, A. Ghorai, S. K. Srivastava, M. Modak, S. Singh, and S. K. Ray, Highly air-stable single-crystalline-CsPbI3 nanorods: a platform for inverted perovskite solar cells, Adv. Energy Mater. 10(30), 2001305 (2020)
https://doi.org/10.1002/aenm.202001305
|
161 |
J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, and H. B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater. 27(44), 7162 (2015)
https://doi.org/10.1002/adma.201502567
|
162 |
G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, THz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths, Nano Lett. 16(8), 4838 (2016)
https://doi.org/10.1021/acs.nanolett.6b01168
|
163 |
S. Wei, Y. C. Yang, X. J. Kang, L. Wang, L. J. Huang, and D. C. Pan, Homogeneous synthesis and electroluminescenc device of highly luminescent CsPbBr3 perovskite nanocrystals, Inorg. Chem. 56(5), 2596 (2017)
https://doi.org/10.1021/acs.inorgchem.6b02763
|
164 |
Z. Wu, J. Wei, Y. Sun, J. Wu, Y. Hou, P. Wang, N. Wang, and Z. Zhao, Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs, J. Mater. Sci. 54(9), 6917 (2019)
https://doi.org/10.1007/s10853-019-03382-2
|
165 |
Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat, and Z. Tan, Efficient and stable pure green all-inorganic perovskite CsPbBr3 lightemitting diodes with a solution-processed NiOx interlayer, J. Phys. Chem. C 121(50), 28132 (2017)
https://doi.org/10.1021/acs.jpcc.7b11518
|
166 |
H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V. L. Colvin, and W. W. Yu, Surface ligand modification of cesium lead bromide nanocrystals for improved lightemitting performance, Nanoscale 10(9), 4173 (2018)
https://doi.org/10.1039/C7NR09126E
|
167 |
J. H. Park, A. Y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park, and M. H. Song, Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes, ACS Appl. Mater. Interfaces 11(8), 8428 (2019)
https://doi.org/10.1021/acsami.8b20808
|
168 |
P. Song, B. Qiao, D. Song, Z. Liang, D. Gao, J. Cao, Z. Shen, Z. Xu, and S. Zhao, Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded quantum dots with tunable blue and green light emission, J. Alloys Compd. 767, 98 (2018)
https://doi.org/10.1016/j.jallcom.2018.07.073
|
169 |
K. H. Wang, B. S. Zhu, J. S. Yao, and H. B. Yao, Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes, Sci. China Chem. 61(9), 1047 (2018)
https://doi.org/10.1007/s11426-018-9325-7
|
170 |
J. J. Si, Y. Liu, Z. F. He, H. Du, K. Du, D. Chen, J. Li, M. M. Xu, H. Tian, H. P. He, D. W. Di, C. Q. Lin, Y. C. Cheng, J. P. Wang, and Y. Z. Jin, Efficient and high-colorpurity light-emitting diodes based on in-situ grown films of CsPbX3 (X=Br, I) nanoplates with controlled thicknesses, ACS Nano 11(11), 11100 (2017)
https://doi.org/10.1021/acsnano.7b05191
|
171 |
H. Sasaki, N. Kamata, Z. Honda, and T. Yasuda, Improved thermal stability of CsPbBr3 quantum dots by ligand exchange and their application to light-emitting diodes, Appl. Phys. Express 12(3), 035004 (2019)
https://doi.org/10.7567/1882-0786/ab0019
|
172 |
J. Q. Li, X. Shan, S. G. R. Bade, T. Geske, Q. L. Jiang, X. Yang, and Z. B. Yu, Single-layer halide perovskite lightemitting diodes with sub-band gap turn-on voltage and high brightness, J. Phys. Chem. Lett. 7(20), 4059 (2016)
https://doi.org/10.1021/acs.jpclett.6b01942
|
173 |
S. Wu, S. Zhao, Z. Xu, D. Song, B. Qiao, H. Yue, J. Yang, X. Zheng, and P. Wei, Highly bright and stable allinorganic perovskite light-emitting diodes with methoxypolyethylene glycols modified CsPbBr3 emission layer, Appl. Phys. Lett. 113(21), 213501 (2018)
https://doi.org/10.1063/1.5054367
|
174 |
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, and J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nat. Photonics 12(11), 681 (2018)
https://doi.org/10.1038/s41566-018-0260-y
|
175 |
L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Y. Fan, N. Zhang, and X. Liu, Improved performance of CsPbBr3 perovskite light-emitting devices by both boundary and interface defects passivation, Nanoscale 10(38), 18315 (2018)
https://doi.org/10.1039/C8NR06311G
|
176 |
J. Pan, L. N. Quan, Y. B. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. J. Yuan, L. Sinatra, N. M. Alyami, J. K. Liu, E. Yassitepe, Z. Y. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, M. Osman, and O. M. Bakr, Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering, Adv. Mater. 28(39), 8718 (2016)
https://doi.org/10.1002/adma.201600784
|
177 |
Q. S. Shan, J. Z. Song, Y. S. Zou, J. H. Li, L. M. Xu, J. Xue, Y. H. Dong, B. N. Han, J. W. Chen, and H. B. Zeng, High performance metal halide perovskite light-emitting diode: From material design to device optimization, Small 13(45), 1701770 (2017)
https://doi.org/10.1002/smll.201701770
|
178 |
L. M. Xu, J. H. Li, B. Cai, J. Z. Song, F. J. Zhang, T. Fang, and H. B. Zeng, A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes, Nat. Commun. 11, 3902 (2020)
https://doi.org/10.1038/s41467-020-17633-3
|
179 |
G. Lozano, The role of metal halide perovskites in nextgeneration lighting devices, J. Phys. Chem. Lett. 9(14), 3987 (2018)
https://doi.org/10.1021/acs.jpclett.8b01417
|
180 |
D. X. Luo, Q. Chen, Y. Qiu, M. L. Zhang, and B. Q. Liu, Device engineering for all-inorganic perovskite lightemitting diodes, Nanomaterials (Basel) 9(7), 1007 (2019)
https://doi.org/10.3390/nano9071007
|
181 |
Y. P. Fu, H. M. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Y. Zhu, and S. Jin, Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I), ACS Nano 10(8), 7963 (2016)
https://doi.org/10.1021/acsnano.6b03916
|
182 |
K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, and J. K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers, J. Phys. Chem. Lett. 7(18), 3703 (2016)
https://doi.org/10.1021/acs.jpclett.6b01821
|
183 |
S. Zhang, Q. Y. Shang, W. N. Du, J. Shi, Z. Y. Wu, Y. Mi, J. Chen, F. J. Liu, Y. Z. Li, M. Liu, Q. Zhang, and X. F. Liu, Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires, Adv. Opt. Mater. 6(2), 1701032 (2018)
https://doi.org/10.1002/adom.201701032
|
184 |
X. X. Wang, M. Shoaib, X. Wang, X. H. Zhang, M. He, Z. Y. Luo, W. H. Zheng, H. L. Li, T. Yang, X. Zhu, L. Ma, and A. Pan, High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling, ACS Nano 12(6), 6170 (2018)
https://doi.org/10.1021/acsnano.8b02793
|
185 |
T. J. S. Evans, A. Schlaus, Y. P. Fu, X. J. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, Continuous-wave lasing in cesium lead bromide perovskite nanowires, Adv. Opt. Mater. 6(2), 1700982 (2018)
https://doi.org/10.1002/adom.201700982
|
186 |
X. X. Wang, H. Zhou, S. P. Yuan, W. H. Zheng, Y. Jiang, X. J. Zhuang, H. J. Liu, Q. L. Zhang, X. L. Zhu, X. Wang, and A. L. Pan, Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing, Nano Res. 10(10), 3385 (2017)
https://doi.org/10.1007/s12274-017-1551-1
|
187 |
L. Jiang, R. M. Liu, R. L. Su, Y. Yu, H. F. Xu, Y. M. Wei, Z. K. Zhou, and X. Wang, Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield, Nanoscale 10(28), 13565 (2018)
https://doi.org/10.1039/C8NR03830A
|
188 |
L. Yang, Z. Q. Li, C. Liu, X. R. Yao, H. Q. Li, J. S. Liu, P. W. Zhu, B. B. Liu, T. Cui, C. Sun, and Y. J. Bao, Temperature-dependent lasing of CsPbI3 triangular pyramid, J. Phys. Chem. Lett. 10(22), 7056 (2019)
https://doi.org/10.1021/acs.jpclett.9b02703
|
189 |
X. S. Tang, Y. Bian, Z. Z. Liu, J. Du, M. Li, Z. P. Hu, J. Yang, W. W. Chen, and L. D. Sun, Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes, Opt. Lett. 44(19), 4706 (2019)
https://doi.org/10.1364/OL.44.004706
|
190 |
Z. Liu, Q. Y. Shang, C. Li, L. Y. Zhao, Y. Gao, Q. Li, J. Chen, S. Zhang, X. F. Liu, Y. S. Fu, and Q. Zhang, Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires, Appl. Phys. Lett. 114(10), 101902 (2019)
https://doi.org/10.1063/1.5082759
|
191 |
Z. Z. Liu, J. Yang, J. Du, Z. P. Hu, T. C. Shi, Z. Y. Zhang, Y. Q. Liu, X. S. Tang, Y. X. Leng, and R. X. Li, Robust subwavelength single-mode perovskite nanocuboid laser, ACS Nano 12(6), 5923 (2018)
https://doi.org/10.1021/acsnano.8b02143
|
192 |
Y. Wang, X. M. Li, V. Nalla, H. B. Zeng, and H. D. Sun, Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,Adv. Funct. Mater. 27(13), 1605088 (2017)
https://doi.org/10.1002/adfm.201605088
|
193 |
A. P. Pushkarev, V. I. Korolev, D. I. Markina, F. E. Komissarenko, A. Naujokaitis, A. Drabavičius, V. Pakštas, M. Franckevičius, S. A. Khubezhov, D. A. Sannikov, A. V. Zasedatelev, P. G. Lagoudakis, A. A. Zakhidov, and S. V. Makarov, Few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions, ACS Appl. Mater. Interfaces 11(1), 1040 (2019)
https://doi.org/10.1021/acsami.8b17396
|
194 |
G. J. Xu, Y. Li, J. Y. Yan, X. D. Lv, Y. Liu, and B. Cai, In-plane self-assembly and lasing performance of cesium lead halide perovskite nanowires, Mater. Res. Lett. 7(5), 203 (2019)
https://doi.org/10.1080/21663831.2019.1576797
|
195 |
Z. Z. Liu, Z. P. Hu, T. C. Shi, J. Du, J. Yang, Z. Y. Zhang, X. S. Tang, and Y. X. Leng, Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere, Opt. Express 27(7), 9459 (2019)
https://doi.org/10.1364/OE.27.009459
|
196 |
F. Yan, S. T. Tan, X. Li, and H. V. Demir, Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications, Small 15(47), 1902079 (2019)
https://doi.org/10.1002/smll.201902079
|
197 |
C. X. Bao, J. Yang, S. Bai, W. D. Xu, Z. B. Yan, Q. Y. Xu, J. M. Liu, W. J. Zhang, and F. Gao, High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications, Adv. Mater. 30(38), 1803422 (2018)
https://doi.org/10.1002/adma.201803422
|
198 |
M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis, and K. Petridis, Inorganic and hybrid perovskite based laser devices: A review, Materials (Basel) 12(6), 859 (2019)
https://doi.org/10.3390/ma12060859
|
199 |
Z. Z. Liu, S. H. Huang, J. Du, C. W. Wang, and Y. X. Leng, Advances in inorganic and hybrid perovskites for miniaturized lasers, Nanophotonics 9(8), 2251 (2020)
https://doi.org/10.1515/nanoph-2019-0572
|
200 |
A. S. Polushkin, E. Y. Tiguntseva, A. P. Pushkarev, and S. Makarov, Single-particle perovskite lasers: From material properties to cavity design, Nanophotonics 9(3), doi:10.1515/nanoph-2019-0443
https://doi.org/10.1515/nanoph-2019-0443
|
201 |
Y. H. Dong, Y. Gu, Y. S. Zou, J. Z. Song, L. M. Xu, J. H. Li, J. Xue, X. M. Li, and H. B. Zeng, Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect, Small 12(40), 5622 (2016)
https://doi.org/10.1002/smll.201602366
|
202 |
X. H. Liu, D. J. Yu, F. Cao, X. M. Li, J. P. Ji, J. Chen, X. F. Song, and H. B. Zeng, Low-voltage photodetectors with high responsivity based on solution-processed micrometerscale all-inorganic perovskite nanoplatelets, Small 13(25), 1700364 (2017)
https://doi.org/10.1002/smll.201700364
|
203 |
X. M. Li, D. J. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Y. Shen, H. Sun, and H. Zeng, Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity, ACS Nano 11(2), 2015 (2017)
https://doi.org/10.1021/acsnano.6b08194
|
204 |
T. Yang, Y. P. Zheng, Z. T. Du, W. N. Liu, Z. B. Yang, F. M. Gao, L. Wang, K. C. Chou, X. M. Hou, and W. Y. Yang, Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability, ACS Nano 12(2), 1611 (2018)
https://doi.org/10.1021/acsnano.7b08201
|
205 |
Z. T. Du, D. F. Fu, T. Yang, Z. Fang, W. N. Liu, F. M. Gao, L. Wang, Z. B. Yang, J. Teng, H. Zhang, and W. Y. Yang, Photodetectors with ultra-high detectivity based on stabilized all-inorganic perovskite CsPb0.922Sn0.078I3 nanobelts, J. Mater. Chem. C Mater. Opt. Electron. Devices 6(23), 6287 (2018)
https://doi.org/10.1039/C8TC01837E
|
206 |
W. Zhai, J. Lin, C. Li, S. M. Hu, Y. Huang, C. Yu, Z. K. Wen, Z. Y. Liu, Y. Fang, and C. Tang, Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors, Nanoscale 10(45), 21451 (2018)
https://doi.org/10.1039/C8NR05683H
|
207 |
P. B. Gui, Z. Chen, B. R. Li, F. Yao, X. L. Zheng, Q. Q. Lin, and G. J. Fang, High-performance photodetectors based on single all-inorganic CsPbBr3 perovskite microwire, ACS Photonics 5(6), 2113 (2018)
https://doi.org/10.1021/acsphotonics.7b01567
|
208 |
M. M. Han, J. M. Sun, M. Peng, N. Han, Z. H. Chen, D. Liu, Y. N. Guo, S. Zhao, C. X. Shan, T. Xu, X. T. Hao, W. D. Hu, and Z. X. Yang, Controllable growth of lead-free all-inorganic perovskite nanowire array with fast and stable near-infrared photodetection, J. Phys. Chem. C 123(28), 17566 (2019)
https://doi.org/10.1021/acs.jpcc.9b03289
|
209 |
T. B. Yang, F. Li, and R. K. Zheng, Recent progress on cesium lead halide perovskites for photodetection applications, ACS Appl. Electron. Mater. 1(8), 1348 (2019)
https://doi.org/10.1021/acsaelm.9b00346
|
210 |
Z. X. Zhang, C. Li, Y. Lu, X. W. Tong, F. X. Liang, X. Y. Zhao, D. Wu, C. Xie, and L. B. Luo, Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap, J. Phys. Chem. Lett. 10(18), 5343 (2019)
https://doi.org/10.1021/acs.jpclett.9b02390
|
211 |
C. C. Tian, F. Wang, Y. P. Wang, Z. Yang, X. J. Chen, J. J. Mei, H. Z. Liu, and D. X. Zhao, Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors, ACS Appl. Mater. Interfaces 11(17), 15804 (2019)
https://doi.org/10.1021/acsami.9b03551
|
212 |
M. N. Xue, H. Zhou, G. K. Ma, L. Yang, Z. H. Song, J. Zhang, and H. Wang, Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure, Sol. Energy Mater. Sol. Cells 187, 69 (2018)
https://doi.org/10.1016/j.solmat.2018.07.023
|
213 |
Z. T. Du, D. F. Fu, J. Teng, L. Wang, F. M. Gao, W. Y. Yang, H. Zhang, and X. S. Fang, CsPbI3 nanotube photodetectors with high detectivity, Small 15(52), 1905253 (2019)
https://doi.org/10.1002/smll.201905253
|
214 |
Y. Yang, H. T. Dai, F. Yang, Y. T. Zhang, D. Luo, X. L. Zhang, K. Wang, X. W. Sun, and J. Q. Yao, All-perovskite photodetector with fast response, Nanoscale Res. Lett. 14(1), 291 (2019)
https://doi.org/10.1186/s11671-019-3082-z
|
215 |
G. B. Cen, Y. J. Liu, C. X. Zhao, G. Wang, Y. Fu, G. H. Yan, Y. Yuan, C. H. Su, Z. J. Zhao, and W. J. Mai, Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications, Small 15(36), 1902135 (2019)
https://doi.org/10.1002/smll.201902135
|
216 |
Z. Ji, Y. J. Liu, W. J. Li, C. X. Zhao, and W. J. Mai, Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range, Sci. Bull. (Beijing) 65(16), 1371 (2020)
https://doi.org/10.1016/j.scib.2020.04.018
|
217 |
G. Q. Tong, M. W. Jiang, D. Y. Son, L. B. Qiu, Z. H. Liu, L. K. Ono, and Y. B. Qi, Inverse growth of largegrain- size and stable inorganic perovskite micronanowire photodetectors, ACS Appl. Mater. Interfaces 12(12), 14185 (2020)
https://doi.org/10.1021/acsami.0c01056
|
218 |
M. I. Saleem, S. Y. Yang, R. N. Zhi, M. Sulaman, P. V. Chandrasekar, Y. R. Jiang, Y. Tang, A. Batool, and B. S. Zou, Surface engineering of all-inorganic perovskite quantum dots with quasi core-shell technique for highperformance photodetectors, Adv. Mater. Interfaces 7(11), 2000360 (2020)
https://doi.org/10.1002/admi.202000360
|
219 |
P. B. Gui, J. H. Li, X. L. Zheng, H. B. Wang, F. Yao, X. Z. Hu, Y. J. Liu, and G. J. Fang, Self-driven all-inorganic perovskite microplatelet vertical Schottky junction photodetectors with a tunable spectral response, J. Mater. Chem. C 8(20), 6804 (2020)
https://doi.org/10.1039/D0TC01473G
|
220 |
J. Z. Li, J. M. Xia, Y. Liu, S. W. Zhang, C. J. Teng, X. Zhang, B. L. Liu, S. C. Zhao, S. X. Zhao, B. H. Li, G. C. Xing, F. Y. Kang, and G. D. Wei, Ultrasensitive organic-modulated CsPbBr3 quantum dot photodetectors via fast interfacial charge transfer, Adv. Mater. Interfaces 7(2), 1901741 (2020)
https://doi.org/10.1002/admi.201901741
|
221 |
Y. Hou, L. M. Wang, X. M. Zou, D. Wan, C. Liu, G. L. Li, X. Q. Liu, Y. F. Liu, C. Z. Jiang, J. C. Ho, and L. Liao, Substantially improving device performance of allinorganic perovskite-based phototransistors via indium tin oxide nanowire incorporation, Small 16(5), 1905609 (2020)
https://doi.org/10.1002/smll.201905609
|
222 |
Y. Gao, L. Y. Zhao, Q. Y. Shang, Y. G. Zhong, Z. Liu, J. Chen, Z. P. Zhang, J. Shi, W. N. Du, Y. F. Zhang, S. L. Chen, P. Gao, X. F. Liu, X. N. Wang, and Q. Zhang, Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy, Adv. Mater. 30(31), 1801805 (2018)
https://doi.org/10.1002/adma.201801805
|
223 |
S. Zhou, G. D. Zhou, Y. H. Li, X. Xu, Y. J. Hsu, J. B. Xu, N. Zhao, and X. H. Lu, Understanding charge transport in all-inorganic halide perovskite nanocrystal thin-film field effect transistors, ACS Energy Lett. 5(8), 2614 (2020)
https://doi.org/10.1021/acsenergylett.0c01295
|
224 |
D. K. Kim, D. Choi, M. Park, K. S. Jeong, and J. H. Choi, Cesium lead bromide quantum dot light-emitting field-effect transistors, ACS Appl. Mater. Inter. 12(19), 21944 (2020)
https://doi.org/10.1021/acsami.0c06904
|
225 |
G. Rainò, G. Nedelcu, L. Protesescu, M. I. Bodnarchuk, M. V. Kovalenko, R. F. Mahrt, and T. Stöferle, Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure, ACS Nano 10(2), 2485 (2016)
https://doi.org/10.1021/acsnano.5b07328
|
226 |
Q. A. Akkerman, G. Rainó, M. V. Kovalenko, and L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals, Nat. Mater. 17(5), 394 (2018)
https://doi.org/10.1038/s41563-018-0018-4
|
227 |
E. Hassanabadi, M. Latifi, A. F. Gualdrón-Reyes, S. Masi, S. J. Yoon, M. Poyatos, B. Julián-López, and I. Mora-Seró, Ligand & band gap engineering: Tailoring the protocol synthesis for achieving high-quality CsPbI3 quantum dots, Nanoscale 12(26), 14194 (2020)
https://doi.org/10.1039/D0NR03180A
|
228 |
R. Zhang, Y. X. Yuan, J. H. Li, Z. X. Qin, Q. M. Zhang, B. Y. Xiong, Z. S. Wang, F. H. Chen, X. J. Du, and W. Yang, Ni and K ion doped CsPbX3 NCs for the improvement of luminescence properties by a facile synthesis method in ambient air, J. Lumin. 221, 117044 (2020)
https://doi.org/10.1016/j.jlumin.2020.117044
|
229 |
K. Thesika and A. V. Murugan, Microwave-enhanced chemistry at solid-liquid interfaces: Synthesis of allinorganic CsPbX3 nanocrystals and unveiling the anioninduced evolution of structural and optical properties, Inorg. Chem. 59(9), 6161 (2020)
https://doi.org/10.1021/acs.inorgchem.0c00294
|
230 |
R. Y. Wang, Y. Muhammad, X. Xu, M. Ran, Q. F. Zhang, J. C. Zhong, F. W. Zhuge, H. Q. Li, L. Gan, and T. Y. Zhai, Facilitating all-inorganic halide perovskites fabrication in confined-space deposition, Small Methods 4(7), 2000102 (2020)
https://doi.org/10.1002/smtd.202000102
|
231 |
Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions, Nano Lett. 18(6), 3502 (2018)
https://doi.org/10.1021/acs.nanolett.8b00560
|
232 |
J. M. Huang, T. Lei, M. Siron, Y. Zhang, S. Yu, F. Seeler, A. Dehestani, L. N. Quan, K. Schierle-Arndt, and P. D. Yang, Lead-free cesium europium halide perovskite nanocrystals, Nano Lett. 20(5), 3734 (2020)
https://doi.org/10.1021/acs.nanolett.0c00692
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|