|
|
Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space |
Zhen-Ming Xu (许震明)1,2,3,4( ) |
1. Institute of Modern Physics, Northwest University, Xi’an 710127, China 2. School of Physics, Northwest University, Xi’an 710127, China 3. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China 4. Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China |
|
|
Abstract In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.
|
Keywords
thermodynamics of black hole
phase transition
the Maxwell construction
the Ruppeiner thermodynamic geometry
|
Corresponding Author(s):
Zhen-Ming Xu (许震明)
|
Issue Date: 18 December 2020
|
|
1 |
S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975); Errutum, Commun. Math. Phys. 46, 206 (1976)
https://doi.org/10.1007/BF01608497
|
2 |
J. M. Bardeen, B. Carter, and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
|
3 |
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
|
4 |
S. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87(4), 577 (1983)
https://doi.org/10.1007/BF01208266
|
5 |
R. M. Wald, The thermodynamics of black holes, Living Rev. Relativ. 4(1), 6 (2001)
https://doi.org/10.12942/lrr-2001-6
|
6 |
T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
https://doi.org/10.1088/0034-4885/73/4/046901
|
7 |
S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23(11), 1430023 (2014)
https://doi.org/10.1142/S0218271814300237
|
8 |
D. Kubiznak, R. B. Mann, and M. Teo, Black hole chemistry: Thermodynamics with Lambda, Class. Quantum Gravity 34(6), 063001 (2017)
https://doi.org/10.1088/1361-6382/aa5c69
|
9 |
D. Kastor, S. Ray, and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quantum Gravity 26(19), 195011 (2009)
https://doi.org/10.1088/0264-9381/26/19/195011
|
10 |
B. P. Dolan, The cosmological constant and the black hole equation of state, Class. Quantum Gravity 28, 125020 (2011)
https://doi.org/10.1088/0264-9381/28/12/125020
|
11 |
N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume, Galaxies 2(1), 89 (2014)
https://doi.org/10.3390/galaxies2010089
|
12 |
D. Kubiznak and R. B. Mann, P–Vcriticality of charged AdS black holes, J. High Energy Phys. 2012, 33 (2012)
https://doi.org/10.1007/JHEP07(2012)033
|
13 |
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M. B. Sedra, and A. Segui, On heat properties of AdS black holes in higher dimensions, J. High Energy Phys. 05(5), 149 (2015)
https://doi.org/10.1007/JHEP05(2015)149
|
14 |
S. W. Wei and Y. X. Liu, Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes, Phys. Rev. D 91(4), 044018 (2015)
https://doi.org/10.1103/PhysRevD.91.044018
|
15 |
R.-G. Cai, L.-M. Cao, L. Li, and R.-Q. Yang, P–Vcriticality in the extended phase space of GB black holes in AdS space, J. High Energy Phys. 2013, 5 (2013)
https://doi.org/10.1007/JHEP09(2013)005
|
16 |
W. Xu, H. Xu, and L. Zhao, Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C 74(7), 2970 (2014)
https://doi.org/10.1140/epjc/s10052-014-2970-8
|
17 |
S. H. Hendi, S. Panahiyan, B. E. Panah, M. Faizal, and M. Momennia, Critical behavior of charged black holes in Gauss–Bonnet gravity’s rainbow, Phys. Rev. D 94(2), 024028 (2016)
https://doi.org/10.1103/PhysRevD.94.024028
|
18 |
M. Cvetič, S. Nojiri, and S. D. Odintsov, 0, S. Nojiri, and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss– Bonnet gravity, Nucl. Phys. B 628(1–2), 295 (2002)
https://doi.org/10.1016/S0550-3213(02)00075-5
|
19 |
S. W. Wei and Y. X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes, Phys. Rev. D 87(4), 044014 (2013)
https://doi.org/10.1103/PhysRevD.87.044014
|
20 |
D. C. Zou, Y. Q. Liu, and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90(4), 044063 (2014)
https://doi.org/10.1103/PhysRevD.90.044063
|
21 |
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, and M. B. Sedra, Maxwell’s equal-area law for Gauss–Bonnet anti-de Sitter black holes, Eur. Phys. J. C 75(2), 71 (2015)
https://doi.org/10.1140/epjc/s10052-015-3299-7
|
22 |
H. Xu, and Z. M. Xu, Maxwell’s equal area law for Lovelock thermodynamics, Int. J. Mod. Phys. D 26(04), 1750037 (2017)
https://doi.org/10.1142/S0218271817500377
|
23 |
Y. G. Miao and Z. M. Xu, Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS5 spacetime, Eur. Phys. J. C 77(6), 403 (2017)
|
24 |
Y. G. Miao and Z. M. Xu, Thermodynamics of noncommutative high-dimensional AdS black holes with non- Gaussian smeared matter distributions, Eur. Phys. J. C 76(4), 217 (2016)
https://doi.org/10.1140/epjc/s10052-016-4073-1
|
25 |
A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22(03), 1350010 (2013)
https://doi.org/10.1142/S0218271813500107
|
26 |
M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84(2), 024037 (2011)
https://doi.org/10.1103/PhysRevD.84.024037
|
27 |
E. Spallucci and A. Smailagic, Maxwell’s equal area law for charged anti-de Sitter black holes, Phys. Lett. B 723(4–5), 436 (2013)
https://doi.org/10.1016/j.physletb.2013.05.038
|
28 |
G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605 (1995); Errutum, Rev. Mod. Phys. 68, 313 (1996)
https://doi.org/10.1103/RevModPhys.68.313
|
29 |
G. Ruppeiner, Thermodynamic curvature and black holes, in: S. Bellucci (Eds.), Breaking of supersymmetry and ultraviolet divergences in extended supergravity, Springer Proceedings in Physics 153, 179 (2014), arXiv: 1309.0901 [gr-qc]
https://doi.org/10.1007/978-3-319-03774-5_10
|
30 |
F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63(6), 2479 (1975)
https://doi.org/10.1063/1.431689
|
31 |
S. W. Wei and Y. X. Liu, Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition, Phys. Rev. Lett. 115(11), 111302 (2015); Erratum, Phys. Rev. Lett. 116(16), 169903 (2016)
https://doi.org/10.1103/PhysRevLett.116.169903
|
32 |
S. W. Wei, Y. X. Liu, and R. B. Mann, Repulsive interactions and universal properties of charged anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123(7), 071102 (2019)
https://doi.org/10.1103/PhysRevLett.123.071103
|
33 |
Y. G. Miao and Z. M. Xu, Thermal molecular potential among micromolecules in charged AdS black holes, Phys. Rev. D 98(4), 044001 (2018)
https://doi.org/10.1103/PhysRevD.98.044001
|
34 |
Z. M. Xu, B. Wu, and W. L. Yang, Ruppeiner thermodynamic geometry for the Schwarzschild AdS black hole, Phys. Rev. D 101(2), 024018 (2020)
https://doi.org/10.1103/PhysRevD.101.024018
|
35 |
A. Ghosh and C. Bhamidipati, Thermodynamic geometry for charged Gauss–Bonnet black holes in AdS spacetimes, Phys. Rev. D 101(4), 046005 (2020)
https://doi.org/10.1103/PhysRevD.101.046005
|
36 |
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Holography, thermodynamics, and fluctuations of charged AdS black holes, Phys. Rev. D 60(10), 104026 (1999)
https://doi.org/10.1103/PhysRevD.60.104026
|
37 |
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Charged AdS black holes and catastrophic holography,Phys. Rev. D 60(6), 064018 (1999)
https://doi.org/10.1103/PhysRevD.60.064018
|
38 |
X. N. Wu, Multicritical phenomena of Reissner–Nordström antide Sitter black holes, Phys. Rev. D 62(12), 124023 (2000)
https://doi.org/10.1103/PhysRevD.62.124023
|
39 |
A. Dehyadegari, A. Sheykhi, and A. Montakhab, Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space, Phys. Lett. B 768, 235 (2017)
https://doi.org/10.1016/j.physletb.2017.02.064
|
40 |
Z.-M. Xu, B. Wu, and W.-L. Yang, The fine micro-thermal structures for the Reissner–Nordström black hole, Chin. Phys. C 44(9), 095106 (2020)
https://doi.org/10.1088/1674-1137/44/9/095106
|
41 |
H. Yazdikarimi, A. Sheykhi, and Z. Dayyani, Critical behavior of Gauss–Bonnet black holes via an alternative phase space, Phys. Rev. D 99(12), 124017 (2019)
https://doi.org/10.1103/PhysRevD.99.124017
|
42 |
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Relativ. Gravit. 35(10), 1733 (2003)
https://doi.org/10.1023/A:1026058111582
|
43 |
J. E. Aman and N. Pidokrajt, Geometry of higherdimensional black hole thermodynamics, Phys. Rev. D 73(2), 024017 (2006)
https://doi.org/10.1103/PhysRevD.73.024017
|
44 |
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Flat information geometries in black hole thermodynamics, Gen. Relativ. Gravit. 38(8), 1305 (2006)
https://doi.org/10.1007/s10714-006-0306-1
|
45 |
B. Mirza, M. Zamani-Nasab, Ruppeiner geometry of RN black holes: Flat or curved? J. High Energy Phys. 06, 059 (2007)
https://doi.org/10.1088/1126-6708/2007/06/059
|
46 |
S. Gunasekaran, D. Kubiznak, and R. B. Mann, Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization, J. High Energy Phys. 11(11), 110 (2012)
https://doi.org/10.1007/JHEP11(2012)110
|
47 |
N. Breton, Smarr’s formula for black holes with nonlinear electrodynamics, Gen. Relativ. Gravit. 37(4), 643 (2005)
https://doi.org/10.1007/s10714-005-0051-x
|
48 |
Y. G. Miao and Z. M. Xu, Thermodynamics of Horndeski black holes with non-minimal derivative coupling, Eur. Phys. J. C 76(11), 638 (2016)
https://doi.org/10.1140/epjc/s10052-016-4482-1
|
49 |
Y.-G. Miao and Z.-M. Xu, Phase transition and entropy inequality of noncommutative black holes in a new extended phase space, J. Cosmol. Astropart. Phys. 03, 046 (2017)
https://doi.org/10.1088/1475-7516/2017/03/046
|
50 |
B. P. Dolan, Intrinsic curvature of thermodynamic potentials for black holes with critical points, Phys. Rev. D 92(4), 044013 (2015)
https://doi.org/10.1103/PhysRevD.92.044013
|
51 |
Y. G. Miao and Z. M. Xu, Parametric phase transition for a Gauss–Bonnet AdS black hole, Phys. Rev. D 98(8), 084051 (2018)
https://doi.org/10.1103/PhysRevD.98.084051
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|