Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (2) : 24502    https://doi.org/10.1007/s11467-020-1038-5
RESEARCH ARTICLE
Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space
Zhen-Ming Xu (许震明)1,2,3,4()
1. Institute of Modern Physics, Northwest University, Xi’an 710127, China
2. School of Physics, Northwest University, Xi’an 710127, China
3. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
4. Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China
 Download: PDF(895 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.

Keywords thermodynamics of black hole      phase transition      the Maxwell construction      the Ruppeiner thermodynamic geometry     
Corresponding Author(s): Zhen-Ming Xu (许震明)   
Issue Date: 18 December 2020
 Cite this article:   
Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1038-5
https://academic.hep.com.cn/fop/EN/Y2021/V16/I2/24502
1 S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975); Errutum, Commun. Math. Phys. 46, 206 (1976)
https://doi.org/10.1007/BF01608497
2 J. M. Bardeen, B. Carter, and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
3 J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
4 S. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87(4), 577 (1983)
https://doi.org/10.1007/BF01208266
5 R. M. Wald, The thermodynamics of black holes, Living Rev. Relativ. 4(1), 6 (2001)
https://doi.org/10.12942/lrr-2001-6
6 T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
https://doi.org/10.1088/0034-4885/73/4/046901
7 S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23(11), 1430023 (2014)
https://doi.org/10.1142/S0218271814300237
8 D. Kubiznak, R. B. Mann, and M. Teo, Black hole chemistry: Thermodynamics with Lambda, Class. Quantum Gravity 34(6), 063001 (2017)
https://doi.org/10.1088/1361-6382/aa5c69
9 D. Kastor, S. Ray, and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quantum Gravity 26(19), 195011 (2009)
https://doi.org/10.1088/0264-9381/26/19/195011
10 B. P. Dolan, The cosmological constant and the black hole equation of state, Class. Quantum Gravity 28, 125020 (2011)
https://doi.org/10.1088/0264-9381/28/12/125020
11 N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume, Galaxies 2(1), 89 (2014)
https://doi.org/10.3390/galaxies2010089
12 D. Kubiznak and R. B. Mann, P–Vcriticality of charged AdS black holes, J. High Energy Phys. 2012, 33 (2012)
https://doi.org/10.1007/JHEP07(2012)033
13 A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M. B. Sedra, and A. Segui, On heat properties of AdS black holes in higher dimensions, J. High Energy Phys. 05(5), 149 (2015)
https://doi.org/10.1007/JHEP05(2015)149
14 S. W. Wei and Y. X. Liu, Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes, Phys. Rev. D 91(4), 044018 (2015)
https://doi.org/10.1103/PhysRevD.91.044018
15 R.-G. Cai, L.-M. Cao, L. Li, and R.-Q. Yang, P–Vcriticality in the extended phase space of GB black holes in AdS space, J. High Energy Phys. 2013, 5 (2013)
https://doi.org/10.1007/JHEP09(2013)005
16 W. Xu, H. Xu, and L. Zhao, Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C 74(7), 2970 (2014)
https://doi.org/10.1140/epjc/s10052-014-2970-8
17 S. H. Hendi, S. Panahiyan, B. E. Panah, M. Faizal, and M. Momennia, Critical behavior of charged black holes in Gauss–Bonnet gravity’s rainbow, Phys. Rev. D 94(2), 024028 (2016)
https://doi.org/10.1103/PhysRevD.94.024028
18 M. Cvetič, S. Nojiri, and S. D. Odintsov, 0, S. Nojiri, and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss– Bonnet gravity, Nucl. Phys. B 628(1–2), 295 (2002)
https://doi.org/10.1016/S0550-3213(02)00075-5
19 S. W. Wei and Y. X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes, Phys. Rev. D 87(4), 044014 (2013)
https://doi.org/10.1103/PhysRevD.87.044014
20 D. C. Zou, Y. Q. Liu, and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90(4), 044063 (2014)
https://doi.org/10.1103/PhysRevD.90.044063
21 A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, and M. B. Sedra, Maxwell’s equal-area law for Gauss–Bonnet anti-de Sitter black holes, Eur. Phys. J. C 75(2), 71 (2015)
https://doi.org/10.1140/epjc/s10052-015-3299-7
22 H. Xu, and Z. M. Xu, Maxwell’s equal area law for Lovelock thermodynamics, Int. J. Mod. Phys. D 26(04), 1750037 (2017)
https://doi.org/10.1142/S0218271817500377
23 Y. G. Miao and Z. M. Xu, Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS5 spacetime, Eur. Phys. J. C 77(6), 403 (2017)
24 Y. G. Miao and Z. M. Xu, Thermodynamics of noncommutative high-dimensional AdS black holes with non- Gaussian smeared matter distributions, Eur. Phys. J. C 76(4), 217 (2016)
https://doi.org/10.1140/epjc/s10052-016-4073-1
25 A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22(03), 1350010 (2013)
https://doi.org/10.1142/S0218271813500107
26 M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84(2), 024037 (2011)
https://doi.org/10.1103/PhysRevD.84.024037
27 E. Spallucci and A. Smailagic, Maxwell’s equal area law for charged anti-de Sitter black holes, Phys. Lett. B 723(4–5), 436 (2013)
https://doi.org/10.1016/j.physletb.2013.05.038
28 G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605 (1995); Errutum, Rev. Mod. Phys. 68, 313 (1996)
https://doi.org/10.1103/RevModPhys.68.313
29 G. Ruppeiner, Thermodynamic curvature and black holes, in: S. Bellucci (Eds.), Breaking of supersymmetry and ultraviolet divergences in extended supergravity, Springer Proceedings in Physics 153, 179 (2014), arXiv: 1309.0901 [gr-qc]
https://doi.org/10.1007/978-3-319-03774-5_10
30 F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63(6), 2479 (1975)
https://doi.org/10.1063/1.431689
31 S. W. Wei and Y. X. Liu, Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition, Phys. Rev. Lett. 115(11), 111302 (2015); Erratum, Phys. Rev. Lett. 116(16), 169903 (2016)
https://doi.org/10.1103/PhysRevLett.116.169903
32 S. W. Wei, Y. X. Liu, and R. B. Mann, Repulsive interactions and universal properties of charged anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123(7), 071102 (2019)
https://doi.org/10.1103/PhysRevLett.123.071103
33 Y. G. Miao and Z. M. Xu, Thermal molecular potential among micromolecules in charged AdS black holes, Phys. Rev. D 98(4), 044001 (2018)
https://doi.org/10.1103/PhysRevD.98.044001
34 Z. M. Xu, B. Wu, and W. L. Yang, Ruppeiner thermodynamic geometry for the Schwarzschild AdS black hole, Phys. Rev. D 101(2), 024018 (2020)
https://doi.org/10.1103/PhysRevD.101.024018
35 A. Ghosh and C. Bhamidipati, Thermodynamic geometry for charged Gauss–Bonnet black holes in AdS spacetimes, Phys. Rev. D 101(4), 046005 (2020)
https://doi.org/10.1103/PhysRevD.101.046005
36 A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Holography, thermodynamics, and fluctuations of charged AdS black holes, Phys. Rev. D 60(10), 104026 (1999)
https://doi.org/10.1103/PhysRevD.60.104026
37 A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Charged AdS black holes and catastrophic holography,Phys. Rev. D 60(6), 064018 (1999)
https://doi.org/10.1103/PhysRevD.60.064018
38 X. N. Wu, Multicritical phenomena of Reissner–Nordström antide Sitter black holes, Phys. Rev. D 62(12), 124023 (2000)
https://doi.org/10.1103/PhysRevD.62.124023
39 A. Dehyadegari, A. Sheykhi, and A. Montakhab, Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space, Phys. Lett. B 768, 235 (2017)
https://doi.org/10.1016/j.physletb.2017.02.064
40 Z.-M. Xu, B. Wu, and W.-L. Yang, The fine micro-thermal structures for the Reissner–Nordström black hole, Chin. Phys. C 44(9), 095106 (2020)
https://doi.org/10.1088/1674-1137/44/9/095106
41 H. Yazdikarimi, A. Sheykhi, and Z. Dayyani, Critical behavior of Gauss–Bonnet black holes via an alternative phase space, Phys. Rev. D 99(12), 124017 (2019)
https://doi.org/10.1103/PhysRevD.99.124017
42 J. E. Aman, I. Bengtsson, and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Relativ. Gravit. 35(10), 1733 (2003)
https://doi.org/10.1023/A:1026058111582
43 J. E. Aman and N. Pidokrajt, Geometry of higherdimensional black hole thermodynamics, Phys. Rev. D 73(2), 024017 (2006)
https://doi.org/10.1103/PhysRevD.73.024017
44 J. E. Aman, I. Bengtsson, and N. Pidokrajt, Flat information geometries in black hole thermodynamics, Gen. Relativ. Gravit. 38(8), 1305 (2006)
https://doi.org/10.1007/s10714-006-0306-1
45 B. Mirza, M. Zamani-Nasab, Ruppeiner geometry of RN black holes: Flat or curved? J. High Energy Phys. 06, 059 (2007)
https://doi.org/10.1088/1126-6708/2007/06/059
46 S. Gunasekaran, D. Kubiznak, and R. B. Mann, Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization, J. High Energy Phys. 11(11), 110 (2012)
https://doi.org/10.1007/JHEP11(2012)110
47 N. Breton, Smarr’s formula for black holes with nonlinear electrodynamics, Gen. Relativ. Gravit. 37(4), 643 (2005)
https://doi.org/10.1007/s10714-005-0051-x
48 Y. G. Miao and Z. M. Xu, Thermodynamics of Horndeski black holes with non-minimal derivative coupling, Eur. Phys. J. C 76(11), 638 (2016)
https://doi.org/10.1140/epjc/s10052-016-4482-1
49 Y.-G. Miao and Z.-M. Xu, Phase transition and entropy inequality of noncommutative black holes in a new extended phase space, J. Cosmol. Astropart. Phys. 03, 046 (2017)
https://doi.org/10.1088/1475-7516/2017/03/046
50 B. P. Dolan, Intrinsic curvature of thermodynamic potentials for black holes with critical points, Phys. Rev. D 92(4), 044013 (2015)
https://doi.org/10.1103/PhysRevD.92.044013
51 Y. G. Miao and Z. M. Xu, Parametric phase transition for a Gauss–Bonnet AdS black hole, Phys. Rev. D 98(8), 084051 (2018)
https://doi.org/10.1103/PhysRevD.98.084051
[1] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[2] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[5] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[9] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[10] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[11] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[12] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[13] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[14] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[15] Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed