Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 43301    https://doi.org/10.1007/s11467-021-1052-2
REVIEW ARTICLE
Optoelectronic characteristics and application of black phosphorus and its analogs
Ying-Ying Li, Bo Gao(), Ying Han, Bing-Kun Chen, Jia-Yu Huo
College of Communication Engineering, Jilin University, Changchun 130012, China
 Download: PDF(2848 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The tunable bandgap from 0.3 eV to 2 eV of black phosphorus (BP) makes it to fill the gap in graphene. When studying the properties of BP more comprehensive, scientists have discovered that many twodimensional materials, such as tellurene, antimonene, bismuthene, indium selenide and tin sulfide, have similar structures and properties to black phosphorus thus called black phosphorus analogs. In this review, we briefly introduce preparation methods of black phosphorus and its analogs, with emphasis on the method of mechanical exfoliation (ME), liquid phase exfoliation (LPE) and chemical vapor deposition (CVD). And their characterization and properties according to their classification of singleelement materials and multi-element materials are described. We focus on the performance of passively mode-locked fiber lasers using BP and its analogs as saturable absorbers (SA) and demonstrated this part through classification of working wavelength. Finally, we introduce the application of BP and its analogs, and discuss their future research prospects.

Keywords black phosphorus and its analogs      passively mode-locked fiber lasers      optoelectronic characteristics      saturable absorber     
Corresponding Author(s): Bo Gao,Ying Han,Bing-Kun Chen,Jia-Yu Huo   
Just Accepted Date: 26 January 2021   Issue Date: 12 April 2021
 Cite this article:   
Ying-Ying Li,Bo Gao,Ying Han, et al. Optoelectronic characteristics and application of black phosphorus and its analogs[J]. Front. Phys. , 2021, 16(4): 43301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1052-2
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/43301
1 G. Wang, A. A. Baker-Murray, and W. J. Blau, Saturable absorption in 2D nanomaterials and related photonic devices, Laser Photonics Rev. 13(7), 1800282 (2019)
https://doi.org/10.1002/lpor.201800282
2 C. Wang, J. Liu, and H. Zhang, Ultrafast pulse lasers based on two-dimensinal nanomaterials, Acta Physica Sinica 68(18), 188101 (2019)
https://doi.org/10.7498/aps.68.20190751
3 X. Chen, Z. Zhou, B. Deng, Z. Wu, F. Xia, Y. Cao, L. Zhang, W. Huang, N. Wang, and L. Wang, Electrically tunable physical properties of two-dimensional materials, Nano Today 27, 99 (2019)
https://doi.org/10.1016/j.nantod.2019.05.005
4 L. Yang, W. Chen, Q. Yu, and B. Liu, Mass production of two-dimensional materials beyond graphene and their applications, Nano Res. (2020)
https://doi.org/10.1007/s12274-020-2897-3
5 T. Feng, X. Li, P. Guo, Y. Zhang, J. Liu, and H. Zhang, MXene: Two dimensional inorganic compounds, for gen- eration of bound state soliton pulses in nonlinear optical system, Nanophotonics 9(8), 2505 (2020)
https://doi.org/10.1515/nanoph-2020-0011
6 P. Cheng, Y. Du, M. Han, and X. Shu, Mode-locked and Q-switched mode-locked fiber laser based on a ferroferricoxide nanoparticles saturable absorber, Opt. Express 28(9), 13177 (2020)
https://doi.org/10.1364/OE.391006
7 M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, Graphene and related 2D materials: An overview of the Raman studies, J. Raman Spectrosc. 49(1), 8 (2018)
https://doi.org/10.1002/jrs.5295
8 Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
https://doi.org/10.1007/s11467-012-0276-6
9 W. Liu, M. Liu, X. Liu, X. Wang, H. X. Deng, M. Lei, Z. Wei, and Z. Wei, Recent advances of 2D materials in nonlinear photonics and fiber lasers, Adv. Opt. Mater. 8(8), 1901631 (2020)
https://doi.org/10.1002/adom.201901631
10 S. Tang, Z. He, G. Liang, S. Chen, Y. Ge, D. K. Sang, J. Lu, S. Lu, Q. Wen, and H. Zhang, Pulse duration dependent nonlinear optical response in black phosphorus dispersions, Opt. Commun. 406, 244 (2018)
https://doi.org/10.1016/j.optcom.2016.11.036
11 R. Gusmão, Z. Sofer, and M. Pumera, Black phosphorus rediscovered: From bulk material to monolayers, Angew. Chem. Int. Ed. Engl. 56(28), 8052 (2017)
https://doi.org/10.1002/anie.201610512
12 B. Guo, Q. Xiao, S. Wang, and H. Zhang, 2D layered materials: Synthesis, nonlinear optical properties, and device applications, Laser Photonics Rev. 13(12), 1800327 (2019)
https://doi.org/10.1002/lpor.201800327
13 Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
https://doi.org/10.1039/C7TC00071E
14 P. W. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7), 1344 (1914)
https://doi.org/10.1021/ja02184a002
15 E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)
https://doi.org/10.1038/506019a
16 B. Gao, C. Ma, J. Huo, Y. Guo, T. Sun, and G. Wu, Influence of gain fiber on dissipative soliton pairs in passively mode-locked fiber laser based on BP as a saturable absorber, Opt. Commun. 410, 191 (2018)
https://doi.org/10.1016/j.optcom.2017.10.014
17 Z. Wang, Y. Xu, S. C. Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, and H. Zhang, Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser, IEEE Photonics J. 8(5), 1503310 (2016)
https://doi.org/10.1109/JPHOT.2016.2598085
18 D. Mao, M. Li, X. Cui, W. Zhang, H. Lu, K. Song, and J. Zhao, Stable high-power saturable absorber based on polymer-black-phosphorus films, Opt. Commun. 406, 254 (2018)
https://doi.org/10.1016/j.optcom.2016.11.027
19 J. Liu, F. Zhao, H. Wang, W. Zhang, X. Hu, X. Li, and Y. Wang, Generation of dark solitons in erbium-doped fiber laser based on black phosphorus nanoparticles, Opt. Mater. 89, 100 (2019)
https://doi.org/10.1016/j.optmat.2018.12.055
20 X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)
https://doi.org/10.1002/adma.201605886
21 A. Naskar and K. S. Kim, Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections, Microb. Pathog. 137, 103800 (2019)
https://doi.org/10.1016/j.micpath.2019.103800
22 Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W. III Goddard, M. Kim, X. Xu, P. Ye, and W. Wu, Field-effect transistors made from solution-grown two-dimensional tellurene, Nat. Electron 1(4), 228 (2018)
https://doi.org/10.1038/s41928-018-0058-4
23 S. A. Hussain, Discovery of several new families of saturable absorbers for ultrashort pulsed laser systems, Sci. Rep. 9(1), 19910 (2019)
https://doi.org/10.1038/s41598-019-56460-5
24 T. Hai, G. Xie, Z. Qiao, Z. Qin, J. Ma, Y. Sun, F. Wang, P. Yuan, J. Ma, and L. Qian, Indium selenide film: a promising saturable absorber in 3- to 4-μm band for midinfrared pulsed laser, Nanophotonics 9(7), 2045 (2020)
https://doi.org/10.1515/nanoph-2020-0068
25 Y. Li, C. Yu, Z. Li, P. Jiang, X. Zhou, C. Gao, and J. Li, Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes, Rare Met. 39(12), 1356 (2020)
https://doi.org/10.1007/s12598-020-01511-4
26 F. J. Manjón, A. Segura, and V. Muñoz, High density photoluminescence induced by laser pulse excitation in InSe under pressure, High Press. Res. 18(1-6), 81 (2000)
https://doi.org/10.1080/08957950008200952
27 S. Li, C. Wang, Y. Yin, E. Lewis, and P. Wang, Novel layered 2D materials for ultrafast photonics, Nanophotonics 9(7), 1743 (2020)
https://doi.org/10.1515/nanoph-2020-0030
28 R. Zhou, K. Ullah, S. Yang, Q. Lin, L. Tang, D. Liu, S. Li, Y. Zhao, and F. Wang, Recent advances in graphene and black phosphorus nonlinear plasmonics, Nanophotonics 9(7), 1695 (2020)
https://doi.org/10.1515/nanoph-2020-0004
29 X. Liu, Q. Gao, Y. Zheng, D. Mao, and J. Zhao, Recent progress of pulsed fiber lasers based on transitionmetal dichalcogenides and black phosphorus saturable absorbers, Nanophotonics 9(8), 2215 (2020)
https://doi.org/10.1515/nanoph-2019-0566
30 C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, Sub-hundred nanosecond pulse generation from a black phosphorus Q-switched Er-doped fiber laser, Opt. Express 28(4), 4708 (2020)
https://doi.org/10.1364/OE.379828
31 D. Wang, H. Song, X. Long, and L. Li, Switchable and tunable multi-wavelength emissions in pulsed ytterbium fiber lasers with black phosphorus saturable absorbers and polarization-maintaining fiber Bragg gratings, Opt. Commun. 452, 373 (2019)
https://doi.org/10.1016/j.optcom.2019.07.042
32 X. Shi, Z. Tong, W. Zhang, J. Qin, H. Pan, and C. Sun, Tunable multiwavelength erbium-doped fiber laser based on BPQDs packaged by poly tetra fluoroethylene and two segments of PMF, Opt. Commun. 453, 124349 (2019)
https://doi.org/10.1016/j.optcom.2019.124349
33 J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, Black phosphorus saturable absorber for ultrashort pulse generation, Appl. Phys. Lett. 107(5), 051108 (2015)
https://doi.org/10.1063/1.4927673
34 M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics, Adv. Opt. Mater. 7(1), 1800224 (2019)
https://doi.org/10.1002/adom.201800224
35 H. Liu, W. Song, Y. Yu, Q. Jiang, F. Pang, and T. Wang, Black phosphorus-film with drop-casting method for high-energy pulse generation From Q-switched Erdoped fiber laser, Photonic Sens. 9(3), 239 (2019)
https://doi.org/10.1007/s13320-019-0549-6
36 P. Guo, X. Li, T. Chai, T. Feng, Y. Ge, Y. Song, and Y. Wang, Few-layer bismuthene for robust ultrafast photonics in C-band optical communications, Nanotechnology 30(35), 354002 (2019)
https://doi.org/10.1088/1361-6528/ab2150
37 H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, Antimonene: A long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region, Photon. Res. 6(9), 900 (2018)
https://doi.org/10.1364/PRJ.6.000900
38 L. Huang and K. W. Ang, Black phosphorus photonics toward on-chip applications, Phys. Rev. Appl. 7(3), 031302 (2020)
https://doi.org/10.1063/5.0005641
39 A. H. H. Al-Masoodi, M. Yasin, M. H. M. Ahmed, A. A. Latiff, H. Arof, and S. W. Harun, Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber, Optik (Stuttg.) 147, 52 (2017)
https://doi.org/10.1016/j.ijleo.2017.08.038
40 C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, and B. Fu, Review on wavelengthtunable pulsed fiber lasers based on 2D materials, Opt. Laser Technol. 131, 106375 (2020)
https://doi.org/10.1016/j.optlastec.2020.106375
41 Y. Zhang, S. Wang, S. Chen, Q. Zhang, X. Wang, X. Zhu, X. Zhang, X. Xu, T. Yang, M. He, X. Yang, Z. Li, X. Chen, M. Wu, Y. Lu, R. Ma, W. Lu, and A. Pan, Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets, Adv. Mater. 32(17), e1808319 (2020)
https://doi.org/10.1002/adma.201808319
42 Y. Zhang, D. Lu, H. Yu, and H. Zhang, Low-dimensional saturable absorbers in the visible spectral region, Adv. Opt. Mater. 7(1), 1800886 (2019)
https://doi.org/10.1002/adom.201800886
43 Y. Han, Y. Guo, B. Gao, C. Ma, R. Zhang, and H. Zhang, Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers, Prog. Quantum Electron. 71, 100264 (2020)
https://doi.org/10.1016/j.pquantelec.2020.100264
44 B. Gao, R. H. Zhang, J. Y. Huo, C. Y. Ma, Y. Han, Q. R. Hou, F. Deng, G. Wu, and Y. Q. Ge, Generation and categories of solitons in various mode-locked fiber lasers, Optik (Stuttg.) 220, 165168 (2020)
https://doi.org/10.1016/j.ijleo.2020.165168
45 Y. Han, B. Gao, Y. Y. Li, J. Y. Huo, and Y. B. Guo, Numerical simulation of two-soliton and three-soliton molecules evolution in passively mode-locked fiber laser, Optik (Stuttg.) 223, 165381 (2020)
https://doi.org/10.1016/j.ijleo.2020.165381
46 Y. Zhao, P. Guo, X. Li, and Z. Jin, Ultrafast photonics application of graphdiyne in the optical communication region, Carbon 149, 336 (2019)
https://doi.org/10.1016/j.carbon.2019.04.075
47 H. Song, Q. Wang, Y. Zhang, and L. Li, Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers, Opt. Commun. 394, 157 (2017)
https://doi.org/10.1016/j.optcom.2017.01.016
48 J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, Ultrafast pulse generation for Er- and Tm-doped fiber lasers with Sb thin film saturable absorber, J. Lightwave Technol. 38(14), 3710 (2020)
https://doi.org/10.1109/JLT.2020.2977975
49 M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics, APL Photonics 4(9), 090801 (2019)
https://doi.org/10.1063/1.5100848
50 Q. Guo, J. Pan, Y. Liu, H. Si, Z. Lu, X. Han, J. Gao, Z. Zuo, H. Zhang, and S. Jiang, Output energy enhancement in a mode-locked Er-doped fiber laser using CVDBi2Se3 as a saturable absorber, Opt. Express 27(17), 24670 (2019)
https://doi.org/10.1364/OE.27.024670
51 E. Kovalska, J. Luxa, T. Hartman, N. Antonatos, P. Shaban, E. Oparin, M. Zhukova, and Z. Sofer, Nonaqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation, Nanoscale 12(4), 2638 (2020)
https://doi.org/10.1039/C9NR10257D
52 H. Liu, Z. Li, Y. Yu, J. Lin, S. Liu, F. Pang, and T. Wang, Nonlinear optical properties of anisotropic twodimensional layered materials for ultrafast photonics, Nanophotonics 9(7), 1651 (2020)
https://doi.org/10.1515/nanoph-2019-0573
53 Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express 23(10), 12823 (2015)
https://doi.org/10.1364/OE.23.012823
54 G. Tiouitchi, M. A. Ali, A. Benyoussef, M. Hamedoun, A. Lachgar, M. Benaissa, A. Kara, A. Ennaoui, A. Mahmoud, F. Boschini, H. Oughaddou, A. El Kenz, and O. Mounkachi, An easy route to synthesize highquality black phosphorus from amorphous red phosphorus, Mater. Lett. 236, 56 (2019)
https://doi.org/10.1016/j.matlet.2018.10.019
55 J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O’Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun. (Camb.) 50(87), 13338 (2014)
https://doi.org/10.1039/C4CC05752J
56 A. Ambrosi, and M. Pumera, Exfoliation of layered materials using electrochemistry, Chem. Soc. Rev. 47(19), 7213 (2018)
https://doi.org/10.1039/C7CS00811B
57 S. Yang, A. Kim, J. Park, H. Kwon, P. T. Lanh, S. Hong, K. J. Kim, and J. W. Kim, Thermal annealing of black phosphorus for etching and protection, Appl. Surf. Sci. 457, 773 (2018)
https://doi.org/10.1016/j.apsusc.2018.06.242
58 J. Jia, S. K. Jang, S. Lai, J. Xu, Y. J. Choi, J. H. Park, and S. Lee, Plasma-treated thickness-controlled twodimensional black phosphorus and its electronic transport properties, ACS Nano 9(9), 8729 (2015)
https://doi.org/10.1021/acsnano.5b04265
59 Z. J. Han, A. T. Murdock, D. H. Seo, and A. Bendavid, Recent progress in plasma-assisted synthesis and modification of 2D materials, 2D Mater. 5(3), 032002 (2018)
https://doi.org/10.1088/2053-1583/aabb81
60 B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)
https://doi.org/10.1364/OE.26.022750
61 L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability, Laser Photonics Rev. 12(1), 1700221 (2018)
https://doi.org/10.1002/lpor.201700221
62 C. Wang, L. Wang, X. Li, W. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser, Nanotechnology 30(2), 025204 (2019)
https://doi.org/10.1088/1361-6528/aae8c1
63 T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, and H. Zhang, Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field, Nanoscale 10(37), 17617 (2018)
https://doi.org/10.1039/C8NR03068E
64 J. Zhu, X. Liu, M. Xue, and C. Chen, Phosphorene: Synthesis, structure, properties and device applications, Acta Phys. -Chim. Sin. 33(11), 2153 (2017)
65 Z. Hui, M. Qu, X. Li, Y. Guo, J. Li, L. Jing, and Z. Wu, SnS nanosheets for harmonic pulses generation in near infrared region, Nanotechnology 31(48), 485706 (2020)
https://doi.org/10.1088/1361-6528/aba978
66 J. Feng, X. Li, A. Qyyum, Y. Zhang, C. Zheng, Y. Wang, J. Liu, J. Lu, and G. Zhu, SnS nanosheets for 105th harmonic soliton molecule generation, Ann. Phys-Berlin 531(10), 1900273 (2019)
https://doi.org/10.1002/andp.201900273
67 H. Zhu, D. Yang, Y. Ji, H. Zhang, and X. Shen, Twodimensional SnS nanosheets fabricated by a novel hydrothermal method, J. Mater. Sci. 40(3), 591 (2005)
https://doi.org/10.1007/s10853-005-6293-x
68 X. Wang, J. Song, and J. Qu, Antimonene: From experimental preparation to practical application, Angew. Chem. Int. Ed. Engl. 58(6), 1574 (2019)
https://doi.org/10.1002/anie.201808302
69 F. Yang, Y. Liang, L. X. Liu, Q. Zhu, W. H. Wang, X. T. Zhu, and J. D. Guo, Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy, Front. Phys. 13(5), 136802 (2018)
https://doi.org/10.1007/s11467-018-0769-z
70 H. Yuan, F. Zhu, J. Wang, R. Yang, N. Wang, Y. Yu, P. Yan, and J. Guo, Generation of ultra-fast pulse based on bismuth saturable absorber, Wuli Xuebao 69(9), 094203 (2020)
https://doi.org/10.7498/aps.69.20191995
71 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
72 S. Wu, K. S. Hui, and K. N. Hui, 2D black phosphorus: From preparation to applications for electrochemical energy storage, Adv. Sci. (Weinh.) 5(5), 1700491 (2018)
https://doi.org/10.1002/advs.201700491
73 J. Wang, X. Wang, J. Lei, M. Ma, C. Wang, Y. Ge, and Z. Wei, Recent advances in mode-locked fiber lasers based on two-dimensional materials, Nanophotonics 9(8), 2315 (2020)
https://doi.org/10.1515/nanoph-2020-0149
74 C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber, Phys. Rev. Appl. 6(4), 041304 (2019)
https://doi.org/10.1063/1.5099188
75 N. Li, Q. Wang, and H.L. Zhang, 2D materials in light: Excited-state dynamics and applications, Chem. Rec. 20(5), 413 (2020)
https://doi.org/10.1002/tcr.201900050
76 H. Ahmad, S. A. Reduan, S. I. Ooi, and M. A. Ismail, Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band, Appl. Opt. 57(24), 6937 (2018)
https://doi.org/10.1364/AO.57.006937
77 Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm, Opt. Express 23(19), 24713 (2015)
https://doi.org/10.1364/OE.23.024713
78 S. Su, B. Xu, J. Ding, and H. Yu, Large-yield exfoliation of few-layer black phosphorus nanosheets in liquid, New J. Chem. 43(48), 19365 (2019)
https://doi.org/10.1039/C9NJ04757C
79 Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, and P. K. Chu, From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics, Adv. Funct. Mater. 25(45), 6996 (2015)
https://doi.org/10.1002/adfm.201502902
80 Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)
https://doi.org/10.1088/2053-1583/aa87c1
81 C. Xing, J. Zhang, J. Jing, J. Li, and F. Shi, Preparations, properties and applications of low-dimensional black phosphorus, Chem. Eng. J. 370, 120 (2019)
https://doi.org/10.1016/j.cej.2019.03.177
82 W. Zhang, G. Wang, F. Xing, Z. Man, F. Zhang, K. Han, H. Zhang, and S. Fu, Passively Q-switched and mode-locked erbium-doped fiber lasers based on tellurene nanosheets as saturable absorber, Opt. Express 28(10), 14729 (2020)
https://doi.org/10.1364/OE.392944
83 W. Yang, N. Xu, and H. Zhang, Nonlinear absorption properties of indium selenide and its application for demonstrating pulsed Er-doped fiber laser, Laser Phys. Lett. 15(10), 105101 (2018)
https://doi.org/10.1088/1612-202X/aad896
84 N. Xu, W. Yang, and H. Zhang, Nonlinear saturable absorption properties of indium selenide and its application for demonstrating a Yb-doped mode-locked fiber laser, Opt. Mater. Express 8(10), 3092 (2018)
https://doi.org/10.1364/OME.8.003092
85 Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability, Adv. Funct. Mater. 28(16), 1705833 (2018)
https://doi.org/10.1002/adfm.201705833
86 B. Fu, J. Sun, G. Wang, C. Shang, Y. Ma, J. Ma, L. Xu, and V. Scardaci, Solution-processed two-dimensional materials for ultrafast fiber lasers (invited), Nanophotonics 9(8), 2169 (2020)
https://doi.org/10.1515/nanoph-2019-0558
87 J. B. Smith, D. Hagaman, and H. F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition, Nanotechnology 27(21), 215602 (2016)
https://doi.org/10.1088/0957-4484/27/21/215602
88 W. Liu, Y. Zhu, X. Xu, S. Wang, and X. Zhang, Preparation of few-layer black phosphorus by wet ball milling exfoliation, J. Mater. Sci. Mater. Electron. 31(12), 9543 (2020)
https://doi.org/10.1007/s10854-020-03496-3
89 Q. Q. Yang, R. T. Liu, C. Huang, Y. F. Huang, L. F. Gao, B. Sun, Z. P. Huang, L. Zhang, C. X. Hu, Z. Q. Zhang, C. L. Sun, Q. Wang, Y. L. Tang, and H.L. Zhang, 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers, Nanoscale 10(45), 21106 (2018)
https://doi.org/10.1039/C8NR06797J
90 J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D. Y. Choi, B. Luther-Davies, and Y. Lu, Producing air-stable monolayers of phosphorene and their defect engineering, Nat. Commun. 7(1), 10450 (2016)
https://doi.org/10.1038/ncomms10450
91 V. Eswaraiah, Q. Zeng, Y. Long, and Z. Liu, Black phosphorus nanosheets: Synthesis, characterization and applications, Small 12(26), 3480 (2016)
https://doi.org/10.1002/smll.201600032
92 J. Y. Xu, L. F. Gao, C. X. Hu, Z. Y. Zhu, M. Zhao, Q. Wang, and H. L. Zhang, Preparation of large size, few-layer black phosphorus nanosheets via phytic acidassisted liquid exfoliation, Chem. Commun. (Camb.) 52(52), 8107 (2016)
https://doi.org/10.1039/C6CC03206K
93 H. Xiao, M. Zhao, J. Zhang, X. Ma, J. Zhang, T. Hu, T. Tang, J. Jia, and H. Wu, Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets, Electrochem. Commun. 89, 10 (2018)
https://doi.org/10.1016/j.elecom.2018.02.010
94 S. Yang, K. Zhang, A. G. Ricciardulli, P. Zhang, Z. Liao, M. R. Lohe, E. Zschech, P. W. M. Blom, W. Pisula, K. Mullen, and X. Feng, A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes, Angew. Chem. Int. Ed. Engl. 57(17), 4677 (2018)
https://doi.org/10.1002/anie.201801265
95 Q. Hao, J. Liu, G. Wang, J. Chen, H. Gan, J. Zhu, Y. Ke, Y. Chai, J. Lin, and W. Zhang, Surface-modified ultrathin inse nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics, ACS Nano 14(9), 11373 (2020)
https://doi.org/10.1021/acsnano.0c03556
96 Z. Yang, J. Hao, S. Yuan, S. Lin, H. M. Yau, J. Dai, and S. P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27(25), 3748 (2015)
https://doi.org/10.1002/adma.201500990
97 J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Twodimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7(1), 13352 (2016)
https://doi.org/10.1038/ncomms13352
98 Q. Sun, X. Zhao, Y. Feng, Y. Wu, Z. Zhang, X. Zhang, X. Wang, S. Feng, and X. Liu, Pressure quenching: a new route for the synthesis of black phosphorus, Inorg. Chem. Front. 5(3), 669 (2018)
https://doi.org/10.1039/C7QI00775B
99 K. Wang, X. Zhang, I. M. Kislyakov, N. Dong, S. Zhang, G. Wang, J. Fan, X. Zou, J. Du, Y. Leng, Q. Zhao, K. Wu, J. Chen, S. M. Baesman, K. S. Liao, S. Maharjan, H. Zhang, L. Zhang, S. A. Curran, R. S. Oremland, W. J. Blau, and J. Wang, Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications, Nat. Commun. 10(1), 3985 (2019)
https://doi.org/10.1038/s41467-019-11898-z
100 B. Wang, S. Zhong, Y. Ge, H. Wang, X. Luo, and H. Zhang, Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene, Nano Res. 13(4), 891 (2020)
https://doi.org/10.1007/s12274-020-2749-1
101 H. Liu, Y. Du, Y. Deng, and P. D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44(9), 2732 (2015)
https://doi.org/10.1039/C4CS00257A
102 A. Castellanos-Gomez, Black phosphorus: Narrow gap, wide applications, J. Phys. Chem. Lett. 6(21), 4280 (2015)
https://doi.org/10.1021/acs.jpclett.5b01686
103 X. Wang and S. Lan, Optical properties of black phosphorus, Adv. Opt. Photonics 8(4), 618 (2016)
https://doi.org/10.1364/AOP.8.000618
104 X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, The renaissance of black phosphorus, Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523 (2015)
https://doi.org/10.1073/pnas.1416581112
105 X. Chen, J. S. Ponraj, D. Fan, and H. Zhang, An overview of the optical properties and applications of black phosphorus, Nanoscale 12(6), 3513 (2020)
https://doi.org/10.1039/C9NR09122J
106 D. Zhang, Z. Yuan, G. Zhang, N. Tian, D. Liu, and Y. Zhang, Preparation and characterization of black phosphorus, Acta Chimi. Sin. 76(7), 537 (2018)
https://doi.org/10.6023/A18040175
107 S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, Size-dependent saturable absorption and modelocking of dispersed black phosphorus nanosheets, Opt. Mater. Express 6(10), 3159 (2016)
https://doi.org/10.1364/OME.6.003159
108 K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
109 J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
110 F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5(1), 4458 (2014)
https://doi.org/10.1038/ncomms5458
111 J. Zou, Q. Ruan, X. Zhang, B. Xu, Z. Cai, and Z. Luo, Visible-wavelength pulsed lasers with low-dimensional saturable absorbers, Nanophotonics 9(8), 2273 (2020)
https://doi.org/10.1515/nanoph-2020-0022
112 T. Wang, W. Zhang, X. Shi, J. Wang, X. Ding, K. Zhang, J. Peng, J. Wu, and P. Zhou, Black phosphorus-enabled harmonic mode locking of dark pulses in a Yb-doped fiber laser, Laser Phys. Lett. 16(8), 085102 (2019)
https://doi.org/10.1088/1612-202X/ab232b
113 L. Xian, A. Pérez Paz, E. Bianco, P. M. Ajayan and A. Rubio, Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties, 2D Mater. 4(4), 041003 (2017)
https://doi.org/10.1088/2053-1583/aa8418
114 Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
115 J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang, Y. Ge, Y. Song, C. Xing, D. Fan, and H. Zhang, Twodimensional tellurium-polymer membrane for ultrafast photonics, Nanoscale 11(13), 6235 (2019)
https://doi.org/10.1039/C9NR00736A
116 F. Zhang, G. Liu, Z. Wang, T. Tang, X. Wang, C. Wang, S. Fu, F. Xing, K. Han, and X. Xu, Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets, Nanoscale 11(36), 17058 (2019)
https://doi.org/10.1039/C9NR03701B
117 Z. Shi, R. Cao, K. Khan, A. K. Tareen, X. Liu, W. Liang, Y. Zhang, C. Ma, Z. Guo, X. Luo, and H. Zhang, Two-dimensional tellurium: Progress, challenges, and prospects, Nano-Micro Lett. 12(1), 99 (2020)
https://doi.org/10.1007/s40820-020-00427-z
118 N. Xu, P. Ma, S. Fu, X. Shang, S. Jiang, S. Wang, D. Li, and H. Zhang, Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noiselike pulse generations, Nanophotonics 9(9), 2783 (2020)
https://doi.org/10.1515/nanoph-2019-0545
119 S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gomez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)
https://doi.org/10.1039/C7CS00125H
120 G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
https://doi.org/10.1021/acsami.5b02441
121 P. Hu, Y. Liu, L. Guo, X. Ge, X. Liu, L. Yu, and Q. Liu, Passively Q-switched erbium-doped fiber laser based on antimonene as saturable absorber, Appl. Opt. 58(28), 7845 (2019)
https://doi.org/10.1364/AO.58.007845
122 G. Liu, F. Zhang, T. Wu, Z. Li, W. Zhang, K. Han, F. Xing, Z. Man, X. Ge, and S. Fu, Single- and dualwavelength passively mode-locked erbium-doped fiber laser based on antimonene saturable absorber, IEEE Photonics J. 11(3), 1 (2019)
https://doi.org/10.1109/JPHOT.2019.2917941
123 T. Feng, X. Li, T. Chai, P. Guo, Y. Zhang, R. Liu, J. Liu, J. Lu, and Y. Ge, Bismuthene nanosheets for 1 μm multipulse generation, Langmuir 36(1), 3 (2020)
https://doi.org/10.1021/acs.langmuir.9b01910
124 J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers, Nanoscale 11(6), 2577 (2019)
https://doi.org/10.1039/C8NR09368G
125 Z. Yang, Z. Wu, Y. Lyu, and J. Hao, Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition, InfoMat 1(1), 98 (2019)
https://doi.org/10.1002/inf2.12001
126 D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zolyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patane, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol. 12(3), 223 (2017)
https://doi.org/10.1038/nnano.2016.242
127 J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3, Adv. Opt. Mater. 4(12), 1939 (2016)
https://doi.org/10.1002/adom.201600365
128 M. Yüksek, H. G. Yaglioglu, A. Elmali, E. M. Aydın, U. Kürüm, and A. Ateş, Nonlinear and saturable absorption characteristics of Ho doped InSe crystals, Opt. Commun. 310, 100 (2014)
https://doi.org/10.1016/j.optcom.2013.07.078
129 H. Long, S. Liu, Q. Wen, H. Yuan, C. Y. Tang, J. Qu, S. Ma, W. Qarony, L. H. Zeng, and Y. H. Tsang, In2Se3 nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking, Nanotechnology 30(46), 465704 (2019)
https://doi.org/10.1088/1361-6528/ab33d2
130 X. Han, H. Zhang, S. Jiang, C. Zhang, D. Li, Q. Guo, J. Gao, and B. Man, Improved laser damage threshold of In2Se3 saturable absorber by PVD for high-power modelocked Er-doped fiber laser, Nanomaterials (Basel) 9(9), 1216 (2019)
https://doi.org/10.3390/nano9091216
131 H. Tian, J. Tice, R. Fei, V. Tran, X. Yan, L. Yang, and H. Wang, Low-symmetry two-dimensional materials for electronic and photonic applications, Nano Today 11(6), 763 (2016)
https://doi.org/10.1016/j.nantod.2016.10.003
132 L. Liu, L. Yu, X. L. Li, Z. B. Wang, and Q. Liang, Structure and optical properties of Cu-doped SnS thin films prepared by PLD, Chin. J. Lumin. 36(11), 1311 (2015)
https://doi.org/10.3788/fgxb20153611.1311
133 Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide, Photon. Res. 7(5), 494 (2019)
https://doi.org/10.1364/PRJ.7.000494
134 Y. Li, Y. He, Y. Cai, S. Chen, J. Liu, Y. Chen, and X. Yuanjiang, Black phosphorus: Broadband nonlinear optical absorption and application, Laser Phys. Lett. 15(2), 025301 (2018)
https://doi.org/10.1088/1612-202X/aa94e3
135 T. Wang, W. Zhang, J. Wang, J. Wu, T. Hou, P. Ma, R. Su, Y. Ma, J. Peng, L. Zhan, K. Zhang, and P. Zhou, Bright/dark switchable mode-locked fiber laser based on black phosphorus, Opt. Laser Technol. 123, 105948 (2020)
https://doi.org/10.1016/j.optlastec.2019.105948
136 M. B. Hisyam, M. F. M. Rusdi, A. A. Latiff, and S. W. Harun, Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber, IEEE J. Sel. Top. Quant. 23(1), 39 (2017)
https://doi.org/10.1109/JSTQE.2016.2532270
137 X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, 102 fs pulse generation from a long-term stable, inkjetprinted black phosphorus-mode-locked fiber laser, Opt. Express 26(10), 12506 (2018)
https://doi.org/10.1364/OE.26.012506
138 H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber, Appl. Opt. 54(34), 10290 (2015)
https://doi.org/10.1364/AO.54.010290
139 Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber, Opt. Lett. 41(1), 56 (2016)
https://doi.org/10.1364/OL.41.000056
140 Q. Feng, H. Liu, M. Zhu, J. Shang, D. Liu, X. Cui, D. Shen, L. Kou, D. Mao, J. Zheng, C. Li, J. Zhang, H. Xu, and J. Zhao, Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application, ACS Appl. Mater. Interfaces 10(11), 9679 (2018)
https://doi.org/10.1021/acsami.8b00556
141 K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction, Ann. Phys-Berlin 527(11–12), 770 (2015)
https://doi.org/10.1002/andp.201500245
142 D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation, Sci. Rep. 5(1), 15899 (2015)
https://doi.org/10.1038/srep15899
143 L. Yun, Black phosphorus saturable absorber for dualwavelength polarization-locked vector soliton generation, Opt. Express 25(26), 32380 (2017)
https://doi.org/10.1364/OE.25.032380
144 Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
https://doi.org/10.1364/OE.24.025933
145 M. H. M. Ahmed, A. A. Latiff, H. Arof, and S. W. Harun, Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber, Laser Phys. Lett. 13(9), 095104 (2016)
https://doi.org/10.1088/1612-2011/13/9/095104
146 C. Gao, S. Lv, G. Zhu, G. Wang, X. Su, B. Wang, S. Kumar, R. Dou, F. Peng, Q. Zhang, H. Yu, X. Lin, and B. Zhang, Self-Q-switching and passively Q-switched modelocking of dual-wavelength Nd:YSAG laser, Opt. Laser Technol. 122, 105860 (2020)
https://doi.org/10.1016/j.optlastec.2019.105860
147 L. Li, Y. Wang, and X. Wang, Ultrafast pulse generation with black phosphorus solution saturable absorber, Laser Phys. 27(8), 085104 (2017)
https://doi.org/10.1088/1555-6611/aa7486
148 E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbiumdoped fiber laser, RSC Adv. 6(76), 72692 (2016)
https://doi.org/10.1039/C6RA14008D
149 D. Na, K. Park, K. H. Park, and Y. W. Song, Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers, Nanotechnology 28(47), 475207 (2017)
https://doi.org/10.1088/1361-6528/aa9429
150 Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, Microfiberbased few-layer black phosphorus saturable absorber for ultra-fast fiber laser, Opt. Express 23(15), 20030 (2015)
https://doi.org/10.1364/OE.23.020030
151 Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, Sub-300 femtosecond soliton tunable fiber laser with allanomalous dispersion passively mode locked by black phosphorus, Opt. Express 24(12), 13316 (2016)
https://doi.org/10.1364/OE.24.013316
152 W. Li, G. Chen, G. Wang, C. Zeng, and W. Zhao, Wideband wavelength-tunable ultrafast fiber laser based on black phosphorus saturable absorber, Laser Phys. Lett. 15(12), 125102 (2018)
https://doi.org/10.1088/1612-202X/aae786
153 J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
https://doi.org/10.1038/srep42357
154 M. Liu, X. F. Jiang, Y. R. Yan, X. D. Wang, A. P. Luo, W. C. Xu, and Z. C. Luo, Black phosphorus quantum dots for femtosecond laser photonics, Opt. Commun. 406, 85 (2018)
https://doi.org/10.1016/j.optcom.2017.04.020
155 Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots, Adv. Opt. Mater. 4(8), 1223 (2016)
https://doi.org/10.1002/adom.201600214
156 G. Liu, J. Yuan, T. Wu, F. Zhang, F. Xing, W. Zhang, H. Zhang, and S. Fu, Ultrathin 2D nonlayered tellurene nanosheets as saturable absorber for picosecond pulse generation in all-fiber lasers, IEEE J. Sel. Top. Quant. 27(2), 1 (2021)
https://doi.org/10.1109/JSTQE.2020.2992625
157 L. Du, D. Lu, J. Li, L. Yang, K. Yang, B. Huang, L. Miao, X. Qi, C. Zhao, J. Zhong, and S. Wen, Antimony thin film as a robust broadband saturable absorber, IEEE J. Sel. Top. Quant. 27(2), 1 (2021)
https://doi.org/10.1109/JSTQE.2020.2969556
158 W. Xu, P. Guo, X. Li, Z. Hui, Y. Wang, Z. Shi, and Y. Shu, Sheet-structured bismuthene for near-infrared dual-wavelength harmonic mode-locking, Nanotechnology 31(22), 225209 (2020)
https://doi.org/10.1088/1361-6528/ab7674
159 P. Guo, X. Li, T. Feng, Y. Zhang, and W. Xu, Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser, ACS Appl. Mater. Interfaces 12(28), 31757 (2020)
https://doi.org/10.1021/acsami.0c05325
160 P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, α-In2Se3 wideband optical modulator for pulsed fiber lasers, Opt. Lett. 43(18), 4417 (2018)
https://doi.org/10.1364/OL.43.004417
161 J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, Ultrafast thulium-doped fiber laser mode locked with black phosphorus, Opt. Lett. 40(16), 3885 (2015)
https://doi.org/10.1364/OL.40.003885
162 J. Liu, K. Xia, W. Zhang, J. Zhu, B. Yan, P. Yang, S. Dai, and Q. Nie, Tm-doped all-fiber structured femtosecond laser mode-locked by a novel Chem-Te saturable absorber, Infrared Phys. Technol. 108, 103343 (2020)
https://doi.org/10.1016/j.infrared.2020.103343
163 J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
https://doi.org/10.1038/srep30361
164 Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength, Opt. Express 26(7), 8224 (2018)
https://doi.org/10.1364/OE.26.008224
165 W. Jia, J. Yu, L. Chai, and C. Y. Wang, Micromachining soda-lime glass by femtosecond laser pulses, Front. Phys. 10(4), 1 (2015)
https://doi.org/10.1007/s11467-015-0492-y
166 Z. Dong, S. Li, R. Chen, H. Li, C. Gu, P. Yao, and L. Xu, Mode-locked ytterbium-doped fiber laser based on offset-spliced graded index multimode fibers, Opt. Laser Technol. 119, 105576 (2019)
https://doi.org/10.1016/j.optlastec.2019.105576
167 L. Zheng, K. Hu, F. Teng, and X. Fang, Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction, Small 13(5), 1602448 (2017)
https://doi.org/10.1002/smll.201602448
168 J. Li, Y. Ding, D. Wei Zhang, and P. Zhou, Photodetectors based on two-dimensional materials and their van der waals heterostructures, Acta Phys.-Chem. Sin. 35(10), 1058 (2019)
https://doi.org/10.3866/PKU.WHXB201812020
169 J. Wu, G. Koon, D. Xiang, C. Han, C. Toh, E. Kulkarni, I. Verzhbitskiy, A. Carvalho, A. Rodin, S. Koenig, G. Eda, W. Chen, A. Neto, and B. Ozyilmaz, Colossal ultraviolet photoresponsivity of few-layer black phosphorus, ACS Nano 9(8), 8070 (2015)
https://doi.org/10.1021/acsnano.5b01922
170 M. Long, P. Wang, H. Fang, and W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors, Adv. Funct. Mater. 29(19), 1803807 (2018)
https://doi.org/10.1002/adfm.201803807
171 L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
172 S. Lan, S. Rodrigues, L. Kang, and W. Cai, Visualizing optical phase anisotropy in black phosphorus, ACS Photonics 3(7), 1176 (2016)
https://doi.org/10.1021/acsphotonics.6b00320
173 J. Miao, L. Zhang, and C. Wang, Black phosphorus electronic and optoelectronic devices, 2D Mater. 6(3), 032003 (2019)
https://doi.org/10.1088/2053-1583/ab1ebd
174 M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)
https://doi.org/10.1021/nl5008085
175 Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C. W. Qiu, S. Li, and Q. Bao, Highly efficient and air-stable infrared photodetector based on 2D layered grapheneblack phosphorus heterostructure, ACS Appl. Mater. Interfaces 9(41), 36137 (2017)
https://doi.org/10.1021/acsami.7b09889
176 W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang, Z. N. Huang, Y. Ge, L. Wu, Z. Dong, X. Dai, Y. Xiang, J. Li, X. Zhang, and H. Zhang, Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions, Small 15(23), e1900902 (2019)
https://doi.org/10.1002/smll.201900902
177 M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock, X. Song, H. Kim, V. R. Shrestha, Y. Gao, K. B. Crozier, M. Scott, and A. Javey, Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors, ACS Nano 12(7), 7253 (2018)
https://doi.org/10.1021/acsnano.8b03424
178 S. Fu, J. Li, S. Zhang, Z. Bai, T. Wu, and Z. Man, Largeenergy mode-locked Er-doped fiber laser based on indium selenide as a modulator, Opt. Mater. Express 9(6), 2662 (2019)
https://doi.org/10.1364/OME.9.002662
179 B. Deng, R. Frisenda, C. Li, X. Chen, A. Castellanos- Gomez, and F. Xia, Progress on black phosphorus photonics, Adv. Opt. Mater. 6(19), 1800365 (2018)
https://doi.org/10.1002/adom.201800365
180 Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, All-optical phosphorene phase modulator with enhanced stability under ambient conditions, Laser Photon. Rev. 12(6), 1800016 (2018)
https://doi.org/10.1002/lpor.201800016
181 C. Lin, R. Grassi, T. Low, and A. S. Helmy, Multilayer black phosphorus as a versatile mid-infrared electro-optic material, Nano Lett. 16(3), 1683 (2016)
https://doi.org/10.1021/acs.nanolett.5b04594
182 M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2·V−1·s−1, Nano Energy 28, 433 (2016)
https://doi.org/10.1016/j.nanoen.2016.08.058
183 X. H. Yu, K. X. Du, and P. Z. Yang, Preparation of low-dimensional black phosphorus and its application in solar cell, Laser & Optoelectronics Progress 56(14), 14001 (2019)
https://doi.org/10.3788/LOP56.140001
184 W. Cheng, N. Singh, W. Elliott, J. Lee, A. Rassoolkhani, X. Jin, E. W. McFarland, and S. Mubeen, Earthabundant tin sulfide-based photocathodes for solar hydrogen production, Adv. Sci. (Weinh.) 5(1), 1700362 (2018)
https://doi.org/10.1002/advs.201700362
185 M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, Black phosphorus: Synthesis and application for solar cells, Adv. Energy Mater. 8(5), 1701832 (2018)
https://doi.org/10.1002/aenm.201701832
186 A. G. Ricciardulli and P. W. M. Blom, Solutionprocessable 2D materials applied in light-emitting diodes and solar cells, Adv. Mater. Technol. 5(8), 1900972 (2020)
https://doi.org/10.1002/admt.201900972
187 Y. Yang, J. Gao, Z. Zhang, S. Xiao, H. H. Xie, Z. B. Sun, J. H. Wang, C. H. Zhou, Y. W. Wang, X. Y. Guo, P. K. Chu, and X. F. Yu, Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells, Adv. Mater. 28(40), 8937 (2016)
https://doi.org/10.1002/adma.201602382
188 J. Song, J. Wang, X. Lin, J. He, H. Liu, Y. Lei, and Z. Chu, Black phosphorus/TiO2 composite photoanode with enhanced photoelectrical performance, ChemElectroChem 4(9), 2373 (2017)
https://doi.org/10.1002/celc.201700220
189 L. Li, L. Chen, S. Mukherjee, J. Gao, H. Sun, Z. Liu, X. Ma, T. Gupta, C. V. Singh, W. Ren, H. M. Cheng, and N. Koratkar, Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries, Adv. Mater. 29(2), 1602734 (2017)
https://doi.org/10.1002/adma.201602734
190 W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, Black phosphorus nanosheets as a robust delivery platform for cancer theranostics, Adv. Mater. 29(1), 1603276 (2017)
https://doi.org/10.1002/adma.201603276
191 J. Ouyang, R. Y. Liu, W. Chen, Z. Liu, Q. Xu, K. Zeng, L. Deng, L. Shen, and Y. N. Liu, A black phosphorus based synergistic antibacterial platform against drug resistant bacteria, J. Mater. Chem. B 6(39), 6302 (2018)
https://doi.org/10.1039/C8TB01669K
192 M. Wen, J. Wang, R. Tong, D. Liu, H. Huang, Y. Yu, Z. K. Zhou, P. K. Chu, and X. F. Yu, A low-cost metalfree photocatalyst based on black phosphorus, Adv. Sci. (Weinh.) 6(1), 1801321 (2019)
https://doi.org/10.1002/advs.201801321
193 T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor, Nat. Commun. 10(1), 28 (2019)
https://doi.org/10.1038/s41467-018-07947-8
194 R. Quhe, X. Peng, Y. Pan, M. Ye, Y. Wang, H. Zhang, S. Feng, Q. Zhang, J. Shi, J. Yang, D. Yu, M. Lei, and J. Lu, Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 9(4), 3959 (2017)
https://doi.org/10.1021/acsami.6b14699
195 W. Zhou, J. Chen, P. Bai, S. Guo, S. Zhang, X. Song, L. Tao, and H. Zeng, Two-dimensional pnictogen for fieldeffect transistors, Research (Wash. D. C.) 2019, 1046329 (2019)
https://doi.org/10.34133/2019/1046329
196 Y. Wang, M. He, S. Ma, C. Yang, M. Yu, G. Yin, and P. Zuo, Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium ion battery applications, J. Phys. Chem. Lett. 11(7), 2708 (2020)
https://doi.org/10.1021/acs.jpclett.0c00746
197 L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, properties, and applications, J. Phys. Chem. Lett. 6(14), 2794 (2015)
https://doi.org/10.1021/acs.jpclett.5b01094
198 M. R. Benzigar, V. D. B. C. Dasireddy, X. Guan, T. Wu, and G. Liu, Advances on emerging materials for flexible supercapacitors: Current trends and beyond, Adv. Funct. Mater. 30(40), 2002993 (2020)
https://doi.org/10.1002/adfm.202002993
199 J. Zhu, G. Xiao, and X. Zuo, Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries, Nano-Micro Lett. 12(1), 120 (2020)
https://doi.org/10.1007/s40820-020-00453-x
200 T. Zhou, W. Pang, C. Zhang, J. Yang, Z. Chen, H. Liu, and Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS, ACS Nano 8(8), 8323 (2014)
https://doi.org/10.1021/nn503582c
201 J. Choi, N. R. Kim, K. Lim, K. Ku, H. J. Yoon, J. G. Kang, K. Kang, P. V. Braun, H. J. Jin, and Y. S. Yun, Tin sulfide-based nanohybrid for high-performance anode of sodium-ion batteries, Small 13(30), 1700767 (2017)
https://doi.org/10.1002/smll.201700767
202 X. Mei, T. Hu, Y. Wang, X. Weng, R. Liang, and M. Wei, Recent advancements in two-dimensional nanomaterials for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12(2), e1596 (2020)
https://doi.org/10.1002/wnan.1596
203 M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, and P. N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus, Nano Today 25, 135 (2019)
https://doi.org/10.1016/j.nantod.2019.02.012
204 L. Cheng, X. Wang, F. Gong, T. Liu, and Z. Liu, 2D nanomaterials for cancer theranostic applications, Adv. Mater. 32(13), 1902333 (2020)
https://doi.org/10.1002/adma.201902333
205 N. M. Latiff, W. Z. Teo, Z. Sofer, A. C. Fisher, and M. Pumera, The cytotoxicity of layered black phosphorus, Chemistry 21(40), 13991 (2015)
https://doi.org/10.1002/chem.201502006
206 A. Naskar, S. Kim, and K. Kim, A nontoxic biocompatible nanocomposite comprising black phosphorus with Au–γ-Fe2O3 nanoparticles, RSC Advances 10(27), 16162 (2020)
https://doi.org/10.1039/D0RA02476G
207 T. Fan, Y. Zhou, M. Qiu, and H. Zhang, Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine, J. Innov. Opt. Health Sci. 11(06), 1830003 (2018)
https://doi.org/10.1142/S1793545818300033
208 M. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, and T. Majima, Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B 217, 285 (2017)
https://doi.org/10.1016/j.apcatb.2017.06.002
209 Y. Zheng, Y. Chen, B. Gao, B. Lin, and X. Wang, Black phosphorus and carbon nitride hybrid photocatalysts for photoredox reactions, Adv. Funct. Mater. 30(30), 2002021 (2020)
https://doi.org/10.1002/adfm.202002021
210 N. Li, Z. Z. Kong, X. Z. Chen, and Y. F. Yang, Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis, J. Inorg. Mater. 35(7), 735 (2019)
211 A. Yang, D. Wang, X. Wang, D. Zhang, N. Koratkar, and M. Rong, Recent advances in phosphorene as a sensing material, Nano Today 20, 13 (2018)
https://doi.org/10.1016/j.nantod.2018.04.001
212 R. N. Pedrosa, R. G. Amorim, and W. L. Scopel, Embedded carbon nanowire in black phosphorene and C-doping: The rule to control electronic properties, Nanotechnology 31(27), 275201 (2020)
https://doi.org/10.1088/1361-6528/ab7fd0
213 S. Xiao, H. Wang, Y. Qin, X. Li, H. Xin, G. Wang, L. Hu, Y. Wang, Y. Li, W. Qi, and J. He, Nonlinear optical modulation of MoS2/black phosphorus/MoS2 at 1550 nm, Physica B 594, 412364 (2020)
https://doi.org/10.1016/j.physb.2020.412364
214 R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, Triwavelength synchronously modelocked fiber laser based on few-layered black phosphorus, Appl. Phys. Express 9(9), 092701 (2016)
https://doi.org/10.7567/APEX.9.092701
215 X. Jin, G. Hu, M. Zhang, T. Albrow-Owen, Z. Zheng, and T. Hasan, Environmentally stable black phosphorus saturable absorber for ultrafast laser, Nanophotonics 9(8), 2445 (2020)
https://doi.org/10.1515/nanoph-2019-0524
216 T. Wang, X. Jin, J. Yang, J. Wu, Q. Yu, Z. Pan, X. Shi, Y. Xu, H. Wu, J. Wang, T. He, K. Zhang, and P. Zhou, Oxidation-resistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 μm Tm/Ho-doped fiber laser, ACS Appl. Mater. Interfaces 11(40), 36854 (2019)
https://doi.org/10.1021/acsami.9b12415
217 J. Y. Lee, J. H. Shin, G.H. Lee, and C.H. Lee, Twodimensional semiconductor optoelectronics based on van der Waals heterostructures, Nanomaterials (Basel) 6(11), 193 (2016)
https://doi.org/10.3390/nano6110193
218 B. Yan, G. Li, B. Shi, J. Liu, H. Nie, K. Yang, B. Zhang, and J. He, 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber, Nanophotonics 9(8), 2593 (2020)
https://doi.org/10.1515/nanoph-2020-0174
219 F. Lou, B. Zhang, S. Sun, C. Hu, Z. Lin, J. Jiang, S. Zhang, X. Wang, B. Teng, and J. He, Black phosphorus mode-locked sub-100 fs bulk laser based on heterostructured Yb composite crystal, Appl. Phys. Express 11(1), 012601 (2018)
https://doi.org/10.7567/APEX.11.012601
220 Q. Liu, X. Wang, J. Wang, and X. Huang, Spatially controlled two-dimensional heterostructures via solutionphase growth, Acta Phys.-Chim. Sinica 35(10), 1099 (2019)
https://doi.org/10.3866/PKU.WHXB201811005
221 H. Yuan and Z. Li, Interfacial properties of black phosphorus/ transition metal carbide van der Waals heterostructures, Front. Phys. 13(3), 138103 (2018)
https://doi.org/10.1007/s11467-018-0759-1
222 Y. Song, K. You, J. Zhao, D. Huang, Y. Chen, C. Xing, and H. Zhang, A nano-lateral heterojunction of seleniumcoated tellurium for infrared-band soliton fiber lasers, Nanoscale 12(28), 25933 (2020)
https://doi.org/10.1039/D0NR02548H
[1] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed