|
|
Organic single crystal phototransistors: Recent approaches and achievements |
Changbin Zhao1, Muhammad Umair Ali2, Jiaoyi Ning1, Hong Meng1,3( ) |
1. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China 2. Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China 3. Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China |
|
|
Abstract Organic phototransistors (OPTs), compared to traditional inorganic counterparts, have attracted a great deal of interest because of their inherent flexibility, light-weight, easy and low-cost fabrication, and are considered as potential candidates for next-generation wearable electronics. Currently, significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols. Among various types of OPTs, small molecule organic single crystal phototransistors (OSCPTs) standout because of their exciting features, such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors. In this review, a brief introduction to device architectures, working mechanisms and figure of merits for OPTs is presented. We then overview recent approaches employed and achievements made for the development of OSCPTs. Finally, we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.
|
Keywords
photodetectors
organic transistors
organic phototransistors
organic single crystals
flexible electronics
|
Corresponding Author(s):
Hong Meng
|
Issue Date: 12 April 2021
|
|
1 |
P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(7), 3693 (2003)
https://doi.org/10.1063/1.1534621
|
2 |
F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Solution-processed semiconductors for nextgeneration photodetectors, Nat. Rev. Mater. 2 (2017)
https://doi.org/10.1038/natrevmats.2017.12
|
3 |
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Organic light detectors: Photodiodes and phototransistors, Adv. Mater. 25(31), 4267 (2013)
https://doi.org/10.1002/adma.201204979
|
4 |
P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Recent advances in polymer phototransistors, Polym. Chem. 6(46), 7933 (2015)
https://doi.org/10.1039/C5PY01373A
|
5 |
O. Ostroverkhova, Organic optoelectronic materials: Mechanisms and applications, Chem. Rev. 116(22), 13279 (2016)
https://doi.org/10.1021/acs.chemrev.6b00127
|
6 |
E. Manna, T. Xiao, J. Shinar, and R. Shinar, Organic photodetectors in analytical applications, Electronics (Basel) 4(3), 688 (2015)
https://doi.org/10.3390/electronics4030688
|
7 |
S. Feruglio, G. N. Lu, P. Garda, and G. Vasilescu, A review of the CMOS buried double junction (BDJ) photodetector and its applications, Sensors (Basel) 8(10), 6566 (2008)
https://doi.org/10.3390/s8106566
|
8 |
D. Yang and D. Ma, Development of organic semiconductor photodetectors: From mechanism to applications, Adv. Opt. Mater. 7(1), 1800522 (2019)
https://doi.org/10.1002/adom.201800522
|
9 |
G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, Organic photodetectors and their application in large area and flexible image sensors: The role of dark current, Adv. Funct. Mater. 30(20), 1904205 (2020)
https://doi.org/10.1002/adfm.201904205
|
10 |
J. Zhou and J. Huang, Photodetectors based on organicinorganic hybrid lead halide perovskites, Adv. Sci. (Weinh.) 5(1), 1700256 (2018)
https://doi.org/10.1002/advs.201700256
|
11 |
Q. Li, Y. Guo, and Y. Liu, Exploration of nearinfrared organic photodetectors, Chem. Mater. 31(17), 6359 (2019)
https://doi.org/10.1021/acs.chemmater.9b00966
|
12 |
D. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhong, Z.Y. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, and H. Fuchs, Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays, Nat. Commun. 10(1), 12 (2019)
https://doi.org/10.1038/s41467-018-07943-y
|
13 |
W. Shockley, M. Sparks, and G. K. Teal, p−njunction transistors, Phys. Rev. 83(1), 151 (1951)
https://doi.org/10.1103/PhysRev.83.151
|
14 |
P. C. Y. Chow and T. Someya, Organic photodetectors for next-generation wearable electronics, Adv. Mater. 32(15), 1902045 (2020)
https://doi.org/10.1002/adma.201902045
|
15 |
D. H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Epidermal electronics, Science 333(6044), 838 (2011)
https://doi.org/10.1126/science.1206157
|
16 |
J. W. Lee, R. Xu, S. Lee, K. I. Jang, Y. Yang, A. Banks, K. J. Yu, J. Kim, S. Xu, S. Ma, S. W. Jang, P. Won, Y. Li, B. H. Kim, J. Y. Choe, S. Huh, Y. H. Kwon, Y. Huang, U. Paik, and J. A. Rogers, Soft, thin skin-mounted power management systems and their use in wireless thermography, Proc. Natl. Acad. Sci. USA 113(22), 6131 (2016)
https://doi.org/10.1073/pnas.1605720113
|
17 |
S. Wang, J. Xu, W. Wang, G.J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
https://doi.org/10.1038/nature25494
|
18 |
D. J. Lipomi and Z. Bao, Stretchable and ultraflexible organic electronics, MRS Bull. 42(02), 93 (2017)
https://doi.org/10.1557/mrs.2016.325
|
19 |
W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529(7587), 509 (2016)
https://doi.org/10.1038/nature16521
|
20 |
A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. Mc-Culloch, and T. D. Anthopoulos, Recent progress in highmobility organic transistors: A reality check, Adv. Mater. 30(36), 1801079 (2018)
https://doi.org/10.1002/adma.201801079
|
21 |
J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
https://doi.org/10.1039/C7TC01680H
|
22 |
Z. Qi, X. Liao, J. Zheng, C. Di, X. Gao, and J. Wang, High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide, Appl. Phys. Lett. 103(5), 053301 (2013)
https://doi.org/10.1063/1.4817267
|
23 |
T. Hasegawa and J. Takeya, Organic field-effect transistors using single crystals, Sci. Technol. Adv. Mater. 10(2), 024314 (2009)
https://doi.org/10.1088/1468-6996/10/2/024314
|
24 |
Q. F. Li, S. Liu, H. Z. Chen, and H. Y. Li, Alignment and patterning of organic single crystals for field-effect transistors, Chin. Chem. Lett. 27(8), 1421 (2016)
https://doi.org/10.1016/j.cclet.2016.06.027
|
25 |
C. S. Choi, H. S. Kang, W.-Y. Choi, H. J. Kim, W. J. Choi, D. H. Kim, K. C. Jang, and K. S. Seo, High optical responsivity of InAlAs-InGaAs metamorphic highelectron mobility transistor on GaAs substrate with composite channels, IEEE Photon. Technol. Lett. 15(6), 846 (2003)
https://doi.org/10.1109/LPT.2003.811339
|
26 |
H. S. Kang, C. S. Choi, W. Y. Choi, D. H. Kim, and K. S. Seo, Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors, Appl. Phys. Lett. 84(19), 3780 (2004)
https://doi.org/10.1063/1.1739278
|
27 |
Y. Xu, P. R. Berger, J. N. Wilson, and U. H. F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection, Appl. Phys. Lett. 85(18), 4219 (2004)
https://doi.org/10.1063/1.1812834
|
28 |
Y. Lei, N. Li, W. K. E. Chan, B. S. Ong, and F. Zhu, Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks, Org. Electron. 48, 12 (2017)
https://doi.org/10.1016/j.orgel.2017.05.029
|
29 |
J. Park, J. H. Seo, S.W. Yeom, C. Yao, V. W. Yang, Z. Cai, Y. M. Jhon, and B. K. Ju, Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates, Adv. Opt. Mater. 6(9), 1701140 (2018)
https://doi.org/10.1002/adom.201701140
|
30 |
L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li, T. Ji, Y. Hao, and Y. Cui, Research progress in organic photomultiplication photodetectors, Nanomaterials (Basel) 8(9), 713 (2018)
https://doi.org/10.3390/nano8090713
|
31 |
X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, and X. Zhang, Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications, Adv. Mater. 28(13), 2475 (2016)
https://doi.org/10.1002/adma.201504206
|
32 |
X. Zhang, H. Dong, and W. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
https://doi.org/10.1002/adma.201801048
|
33 |
H. Dong, H. Zhu, Q. Meng, X. Gong, and W. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev. 41(5), 1754 (2012)
https://doi.org/10.1039/C1CS15205J
|
34 |
G. Wu, C. Chen, S. Liu, C. Fan, H. Li, and H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals, Adv. Electron. Mater. 1(8), 1500136 (2015)
https://doi.org/10.1002/aelm.201500136
|
35 |
G. Zhao, J. Liu, Q. Meng, D. Ji, X. Zhang, Y. Zou, Y. Zhen, H. Dong, and W. Hu, High-performance UV-sensitive organic phototransistors based on benzo 1,2-b:4,5-b’ dithiophene dimers linked with unsaturated bonds, Adv. Electron. Mater. 1(8), 1500071 (2015)
https://doi.org/10.1002/aelm.201500071
|
36 |
J. Tao, D. Liu, Z. Qin, B. Shao, J. Jing, H. Li, H. Dong, B. Xu, and W. Tian, Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018, Adv. Mater. 32(12), 1907791 (2020)
https://doi.org/10.1002/adma.201907791
|
37 |
A. Li, L. Yan, M. Liu, I. Murtaza, C. He, D. Zhang, Y. He, and H. Meng, Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal, J. Mater. Chem. C 5(22), 5304 (2017)
https://doi.org/10.1039/C7TC01563A
|
38 |
J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
https://doi.org/10.1002/adma.201803655
|
39 |
A. Li, X. Wei, Y. He, C. He, M. U. Ali, H. Yang, O. Goto, and H. Meng, Traps induced memory effect in rubrene single crystal phototransistor, Appl. Phys. Lett. 113(10), 103301 (2018)
https://doi.org/10.1063/1.5042303
|
40 |
R. M. Pinto, W. Gouveia, A. I. S. Neves, and H. Alves, Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures, Appl. Phys. Lett. 107(22), 223301 (2015)
https://doi.org/10.1063/1.4937005
|
41 |
G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
https://doi.org/10.1002/adma.201702993
|
42 |
X. Chen, X. Liu, B. Wu, H. Nan, H. Guo, Z. Ni, F. Wang, X. Wang, Y. Shi, and X. Wang, Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer, Nano Lett. 17(10), 6391 (2017)
https://doi.org/10.1021/acs.nanolett.7b03263
|
43 |
X. Liu, X. Chen, J. Yi, Z. Luo, H. Nan, H. Guo, Z. Ni, Y. Ding, S. Dai, and X. Wang, Organic charge-transfer interface enhanced graphene hybrid phototransistors, Org. Electron. 64, 22 (2019)
https://doi.org/10.1016/j.orgel.2018.10.004
|
44 |
X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang, R. Jia, D. Wu, X. Zhang, J. Jie, and S. T. Lee, Dual-band, highperformance phototransistors from hybrid perovskite and organic crystal array for secure communication applications, ACS Nano 13(5), 5910 (2019)
https://doi.org/10.1021/acsnano.9b01734
|
45 |
Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons, Adv. Mater. 19(18), 2624 (2007)
https://doi.org/10.1002/adma.200700208
|
46 |
Y. Guo, C. Du, G. Yu, C. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, W. Hu, and Y. Liu, High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process, Adv. Funct. Mater. 20(6), 1019 (2010)
https://doi.org/10.1002/adfm.200901662
|
47 |
K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, J. I. Jin, S. J. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly photosensitive J-aggregated single-crystalline organic transistors, Adv. Mater. 23(27), 3095 (2011)
https://doi.org/10.1002/adma.201100944
|
48 |
Y. S. Kim, S. Y. Bae, K. H. Kim, T. W. Lee, J. A. Hur, M. H. Hoang, M. J. Cho, S. J. Kim, Y. Kim, M. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly sensitive phototransistor with crystalline microribbons from new pi-extended pyrene derivative via solution-phase self-assembly, Chem. Commun. (Camb.) 47(31), 8907 (2011)
https://doi.org/10.1039/c1cc11589h
|
49 |
H. Yu, Z. Bao, and J. H. Oh, High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors, Adv. Funct. Mater. 23(5), 629 (2013)
https://doi.org/10.1002/adfm.201201848
|
50 |
I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon, and J. H. Oh, High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials, ACS Appl. Mater. Inter. 10(14), 11826 (2018)
https://doi.org/10.1021/acsami.8b01500
|
51 |
B. Mukherjee, K. Sim, T. J. Shin, J. Lee, M. Mukherjee, M. Ree, and S. Pyo, Organic phototransistors based on solution grown, ordered single crystalline arrays of a piconjugated molecule, J. Mater. Chem. 22(7), 3192 (2012)
https://doi.org/10.1039/c2jm14179e
|
52 |
C. Wang, X. Ren, C. Xu, B. Fu, R. Wang, X. Zhang, R. Li, H. Li, H. Dong, Y. Zhen, S. Lei, L. Jiang, and W. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
https://doi.org/10.1002/adma.201706260
|
53 |
H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, and W. Hu, Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene, Appl. Phys. Lett. 94(12), 123308 (2009)
https://doi.org/10.1063/1.3109785
|
54 |
B. Mukherjee, M. Mukherjee, K. Sim, and S. Pyo, Solution processed, aligned arrays of TCNQ micro crystals for low-voltage organic phototransistor, J. Mater. Chem. 21(6), 1931 (2011)
https://doi.org/10.1039/C0JM02513E
|
55 |
C. Wang, Y. Liu, Z. Wei, H. Li, W. Xu, and W. Hu, Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties, Appl. Phys. Lett. 96(14), 143302 (2010)
https://doi.org/10.1063/1.3383222
|
56 |
L. N. Nguyen, S. Kumar Pradhan, C. N. Yen, M. C. Lin, C. H. Chen, C. S. Wu, K. S. Chang-Liao, M. T. Lin, and C. D. Chen, High performance phototransistors based on single crystalline perylene-tetracarboxylic-dianhydride nanoparticle, Appl. Phys. Lett. 103(18), 183301 (2013)
https://doi.org/10.1063/1.4827975
|
57 |
X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H. G. Rubahn, and J. Kjelstrup-Hansen, Lowvoltage organic phototransistors based on naphthyl endcapped oligothiophene nanofibers, Org. Electron. 15(6), 1273 (2014)
https://doi.org/10.1016/j.orgel.2014.02.023
|
58 |
Y. Yao, L. Zhang, T. Leydecker, and P. Samori, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, J. Am. Chem. Soc. 140(22), 6984 (2018)
https://doi.org/10.1021/jacs.8b03526
|
59 |
C. A. Gunawardana and C. B. Aakeröy, Co-crystal synthesis: Fact, fancy, and great expectations, Chem. Commun. (Camb.) 54(100), 14047 (2018)
https://doi.org/10.1039/C8CC08135B
|
60 |
J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh, and D. Zhu, Fullerene/sulfurbridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity, J. Am. Chem. Soc. 135(2), 558 (2013)
https://doi.org/10.1021/ja310098k
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|