Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 43202    https://doi.org/10.1007/s11467-021-1053-1
TOPICAL REVIEW
Organic single crystal phototransistors: Recent approaches and achievements
Changbin Zhao1, Muhammad Umair Ali2, Jiaoyi Ning1, Hong Meng1,3()
1. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
2. Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
3. Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(5391 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Organic phototransistors (OPTs), compared to traditional inorganic counterparts, have attracted a great deal of interest because of their inherent flexibility, light-weight, easy and low-cost fabrication, and are considered as potential candidates for next-generation wearable electronics. Currently, significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols. Among various types of OPTs, small molecule organic single crystal phototransistors (OSCPTs) standout because of their exciting features, such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors. In this review, a brief introduction to device architectures, working mechanisms and figure of merits for OPTs is presented. We then overview recent approaches employed and achievements made for the development of OSCPTs. Finally, we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.

Keywords photodetectors      organic transistors      organic phototransistors      organic single crystals      flexible electronics     
Corresponding Author(s): Hong Meng   
Issue Date: 12 April 2021
 Cite this article:   
Changbin Zhao,Muhammad Umair Ali,Jiaoyi Ning, et al. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1053-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/43202
1 P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(7), 3693 (2003)
https://doi.org/10.1063/1.1534621
2 F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Solution-processed semiconductors for nextgeneration photodetectors, Nat. Rev. Mater. 2 (2017)
https://doi.org/10.1038/natrevmats.2017.12
3 K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Organic light detectors: Photodiodes and phototransistors, Adv. Mater. 25(31), 4267 (2013)
https://doi.org/10.1002/adma.201204979
4 P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Recent advances in polymer phototransistors, Polym. Chem. 6(46), 7933 (2015)
https://doi.org/10.1039/C5PY01373A
5 O. Ostroverkhova, Organic optoelectronic materials: Mechanisms and applications, Chem. Rev. 116(22), 13279 (2016)
https://doi.org/10.1021/acs.chemrev.6b00127
6 E. Manna, T. Xiao, J. Shinar, and R. Shinar, Organic photodetectors in analytical applications, Electronics (Basel) 4(3), 688 (2015)
https://doi.org/10.3390/electronics4030688
7 S. Feruglio, G. N. Lu, P. Garda, and G. Vasilescu, A review of the CMOS buried double junction (BDJ) photodetector and its applications, Sensors (Basel) 8(10), 6566 (2008)
https://doi.org/10.3390/s8106566
8 D. Yang and D. Ma, Development of organic semiconductor photodetectors: From mechanism to applications, Adv. Opt. Mater. 7(1), 1800522 (2019)
https://doi.org/10.1002/adom.201800522
9 G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, Organic photodetectors and their application in large area and flexible image sensors: The role of dark current, Adv. Funct. Mater. 30(20), 1904205 (2020)
https://doi.org/10.1002/adfm.201904205
10 J. Zhou and J. Huang, Photodetectors based on organicinorganic hybrid lead halide perovskites, Adv. Sci. (Weinh.) 5(1), 1700256 (2018)
https://doi.org/10.1002/advs.201700256
11 Q. Li, Y. Guo, and Y. Liu, Exploration of nearinfrared organic photodetectors, Chem. Mater. 31(17), 6359 (2019)
https://doi.org/10.1021/acs.chemmater.9b00966
12 D. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhong, Z.Y. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, and H. Fuchs, Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays, Nat. Commun. 10(1), 12 (2019)
https://doi.org/10.1038/s41467-018-07943-y
13 W. Shockley, M. Sparks, and G. K. Teal, p−njunction transistors, Phys. Rev. 83(1), 151 (1951)
https://doi.org/10.1103/PhysRev.83.151
14 P. C. Y. Chow and T. Someya, Organic photodetectors for next-generation wearable electronics, Adv. Mater. 32(15), 1902045 (2020)
https://doi.org/10.1002/adma.201902045
15 D. H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Epidermal electronics, Science 333(6044), 838 (2011)
https://doi.org/10.1126/science.1206157
16 J. W. Lee, R. Xu, S. Lee, K. I. Jang, Y. Yang, A. Banks, K. J. Yu, J. Kim, S. Xu, S. Ma, S. W. Jang, P. Won, Y. Li, B. H. Kim, J. Y. Choe, S. Huh, Y. H. Kwon, Y. Huang, U. Paik, and J. A. Rogers, Soft, thin skin-mounted power management systems and their use in wireless thermography, Proc. Natl. Acad. Sci. USA 113(22), 6131 (2016)
https://doi.org/10.1073/pnas.1605720113
17 S. Wang, J. Xu, W. Wang, G.J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
https://doi.org/10.1038/nature25494
18 D. J. Lipomi and Z. Bao, Stretchable and ultraflexible organic electronics, MRS Bull. 42(02), 93 (2017)
https://doi.org/10.1557/mrs.2016.325
19 W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529(7587), 509 (2016)
https://doi.org/10.1038/nature16521
20 A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. Mc-Culloch, and T. D. Anthopoulos, Recent progress in highmobility organic transistors: A reality check, Adv. Mater. 30(36), 1801079 (2018)
https://doi.org/10.1002/adma.201801079
21 J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
https://doi.org/10.1039/C7TC01680H
22 Z. Qi, X. Liao, J. Zheng, C. Di, X. Gao, and J. Wang, High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide, Appl. Phys. Lett. 103(5), 053301 (2013)
https://doi.org/10.1063/1.4817267
23 T. Hasegawa and J. Takeya, Organic field-effect transistors using single crystals, Sci. Technol. Adv. Mater. 10(2), 024314 (2009)
https://doi.org/10.1088/1468-6996/10/2/024314
24 Q. F. Li, S. Liu, H. Z. Chen, and H. Y. Li, Alignment and patterning of organic single crystals for field-effect transistors, Chin. Chem. Lett. 27(8), 1421 (2016)
https://doi.org/10.1016/j.cclet.2016.06.027
25 C. S. Choi, H. S. Kang, W.-Y. Choi, H. J. Kim, W. J. Choi, D. H. Kim, K. C. Jang, and K. S. Seo, High optical responsivity of InAlAs-InGaAs metamorphic highelectron mobility transistor on GaAs substrate with composite channels, IEEE Photon. Technol. Lett. 15(6), 846 (2003)
https://doi.org/10.1109/LPT.2003.811339
26 H. S. Kang, C. S. Choi, W. Y. Choi, D. H. Kim, and K. S. Seo, Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors, Appl. Phys. Lett. 84(19), 3780 (2004)
https://doi.org/10.1063/1.1739278
27 Y. Xu, P. R. Berger, J. N. Wilson, and U. H. F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection, Appl. Phys. Lett. 85(18), 4219 (2004)
https://doi.org/10.1063/1.1812834
28 Y. Lei, N. Li, W. K. E. Chan, B. S. Ong, and F. Zhu, Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks, Org. Electron. 48, 12 (2017)
https://doi.org/10.1016/j.orgel.2017.05.029
29 J. Park, J. H. Seo, S.W. Yeom, C. Yao, V. W. Yang, Z. Cai, Y. M. Jhon, and B. K. Ju, Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates, Adv. Opt. Mater. 6(9), 1701140 (2018)
https://doi.org/10.1002/adom.201701140
30 L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li, T. Ji, Y. Hao, and Y. Cui, Research progress in organic photomultiplication photodetectors, Nanomaterials (Basel) 8(9), 713 (2018)
https://doi.org/10.3390/nano8090713
31 X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, and X. Zhang, Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications, Adv. Mater. 28(13), 2475 (2016)
https://doi.org/10.1002/adma.201504206
32 X. Zhang, H. Dong, and W. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
https://doi.org/10.1002/adma.201801048
33 H. Dong, H. Zhu, Q. Meng, X. Gong, and W. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev. 41(5), 1754 (2012)
https://doi.org/10.1039/C1CS15205J
34 G. Wu, C. Chen, S. Liu, C. Fan, H. Li, and H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals, Adv. Electron. Mater. 1(8), 1500136 (2015)
https://doi.org/10.1002/aelm.201500136
35 G. Zhao, J. Liu, Q. Meng, D. Ji, X. Zhang, Y. Zou, Y. Zhen, H. Dong, and W. Hu, High-performance UV-sensitive organic phototransistors based on benzo 1,2-b:4,5-b’ dithiophene dimers linked with unsaturated bonds, Adv. Electron. Mater. 1(8), 1500071 (2015)
https://doi.org/10.1002/aelm.201500071
36 J. Tao, D. Liu, Z. Qin, B. Shao, J. Jing, H. Li, H. Dong, B. Xu, and W. Tian, Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018, Adv. Mater. 32(12), 1907791 (2020)
https://doi.org/10.1002/adma.201907791
37 A. Li, L. Yan, M. Liu, I. Murtaza, C. He, D. Zhang, Y. He, and H. Meng, Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal, J. Mater. Chem. C 5(22), 5304 (2017)
https://doi.org/10.1039/C7TC01563A
38 J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
https://doi.org/10.1002/adma.201803655
39 A. Li, X. Wei, Y. He, C. He, M. U. Ali, H. Yang, O. Goto, and H. Meng, Traps induced memory effect in rubrene single crystal phototransistor, Appl. Phys. Lett. 113(10), 103301 (2018)
https://doi.org/10.1063/1.5042303
40 R. M. Pinto, W. Gouveia, A. I. S. Neves, and H. Alves, Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures, Appl. Phys. Lett. 107(22), 223301 (2015)
https://doi.org/10.1063/1.4937005
41 G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
https://doi.org/10.1002/adma.201702993
42 X. Chen, X. Liu, B. Wu, H. Nan, H. Guo, Z. Ni, F. Wang, X. Wang, Y. Shi, and X. Wang, Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer, Nano Lett. 17(10), 6391 (2017)
https://doi.org/10.1021/acs.nanolett.7b03263
43 X. Liu, X. Chen, J. Yi, Z. Luo, H. Nan, H. Guo, Z. Ni, Y. Ding, S. Dai, and X. Wang, Organic charge-transfer interface enhanced graphene hybrid phototransistors, Org. Electron. 64, 22 (2019)
https://doi.org/10.1016/j.orgel.2018.10.004
44 X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang, R. Jia, D. Wu, X. Zhang, J. Jie, and S. T. Lee, Dual-band, highperformance phototransistors from hybrid perovskite and organic crystal array for secure communication applications, ACS Nano 13(5), 5910 (2019)
https://doi.org/10.1021/acsnano.9b01734
45 Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons, Adv. Mater. 19(18), 2624 (2007)
https://doi.org/10.1002/adma.200700208
46 Y. Guo, C. Du, G. Yu, C. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, W. Hu, and Y. Liu, High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process, Adv. Funct. Mater. 20(6), 1019 (2010)
https://doi.org/10.1002/adfm.200901662
47 K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, J. I. Jin, S. J. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly photosensitive J-aggregated single-crystalline organic transistors, Adv. Mater. 23(27), 3095 (2011)
https://doi.org/10.1002/adma.201100944
48 Y. S. Kim, S. Y. Bae, K. H. Kim, T. W. Lee, J. A. Hur, M. H. Hoang, M. J. Cho, S. J. Kim, Y. Kim, M. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly sensitive phototransistor with crystalline microribbons from new pi-extended pyrene derivative via solution-phase self-assembly, Chem. Commun. (Camb.) 47(31), 8907 (2011)
https://doi.org/10.1039/c1cc11589h
49 H. Yu, Z. Bao, and J. H. Oh, High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors, Adv. Funct. Mater. 23(5), 629 (2013)
https://doi.org/10.1002/adfm.201201848
50 I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon, and J. H. Oh, High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials, ACS Appl. Mater. Inter. 10(14), 11826 (2018)
https://doi.org/10.1021/acsami.8b01500
51 B. Mukherjee, K. Sim, T. J. Shin, J. Lee, M. Mukherjee, M. Ree, and S. Pyo, Organic phototransistors based on solution grown, ordered single crystalline arrays of a piconjugated molecule, J. Mater. Chem. 22(7), 3192 (2012)
https://doi.org/10.1039/c2jm14179e
52 C. Wang, X. Ren, C. Xu, B. Fu, R. Wang, X. Zhang, R. Li, H. Li, H. Dong, Y. Zhen, S. Lei, L. Jiang, and W. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
https://doi.org/10.1002/adma.201706260
53 H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, and W. Hu, Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene, Appl. Phys. Lett. 94(12), 123308 (2009)
https://doi.org/10.1063/1.3109785
54 B. Mukherjee, M. Mukherjee, K. Sim, and S. Pyo, Solution processed, aligned arrays of TCNQ micro crystals for low-voltage organic phototransistor, J. Mater. Chem. 21(6), 1931 (2011)
https://doi.org/10.1039/C0JM02513E
55 C. Wang, Y. Liu, Z. Wei, H. Li, W. Xu, and W. Hu, Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties, Appl. Phys. Lett. 96(14), 143302 (2010)
https://doi.org/10.1063/1.3383222
56 L. N. Nguyen, S. Kumar Pradhan, C. N. Yen, M. C. Lin, C. H. Chen, C. S. Wu, K. S. Chang-Liao, M. T. Lin, and C. D. Chen, High performance phototransistors based on single crystalline perylene-tetracarboxylic-dianhydride nanoparticle, Appl. Phys. Lett. 103(18), 183301 (2013)
https://doi.org/10.1063/1.4827975
57 X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H. G. Rubahn, and J. Kjelstrup-Hansen, Lowvoltage organic phototransistors based on naphthyl endcapped oligothiophene nanofibers, Org. Electron. 15(6), 1273 (2014)
https://doi.org/10.1016/j.orgel.2014.02.023
58 Y. Yao, L. Zhang, T. Leydecker, and P. Samori, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, J. Am. Chem. Soc. 140(22), 6984 (2018)
https://doi.org/10.1021/jacs.8b03526
59 C. A. Gunawardana and C. B. Aakeröy, Co-crystal synthesis: Fact, fancy, and great expectations, Chem. Commun. (Camb.) 54(100), 14047 (2018)
https://doi.org/10.1039/C8CC08135B
60 J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh, and D. Zhu, Fullerene/sulfurbridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity, J. Am. Chem. Soc. 135(2), 558 (2013)
https://doi.org/10.1021/ja310098k
[1] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed