Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 13304    https://doi.org/10.1007/s11467-021-1055-z
REVIEW ARTICLE
Narrow-bandgap materials for optoelectronics applications
Xiao-Hui Li1(), Yi-Xuan Guo1, Yujie Ren1, Jia-Jun Peng1, Ji-Shu Liu1, Cong Wang2, Han Zhang2()
1. School of Physics & Information Technology, Shaanxi Normal University, Xi’an 710119, China
2. Shenzhen Key Laboratory of Two-Dimensional Materials and Devices/Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, Shenzhen 518060, China
 Download: PDF(3763 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Narrow-bandgap materials possess the intriguing optical-electric properties and unique structures, which can be widely applied in the field of photonics, energy optoelectronic sensing and biomedicine, etc. Nowadays, the researches on nonlinear optical properties of narrow-bandgap materials have attracted extensive attention worldwide. In this paper, we review the progress of narrow-bandgap materials from many aspects, such as background, nonlinear optical properties, energy band structure, methods of preparation, and applications. These materials have obvious nonlinear optical characteristics and the interaction with the short pulse laser excitation shows the extremely strong nonlinear absorption characteristics, which leads to the optical limiting or saturable absorption related to Pauli blocking and excited state absorption. Especially, some of these novel narrow-bandgap materials have been utilized for the generation of ultrashort pulse that covers the range from the visible to midinfrared wavelength regions. Hence, the study on these materials paves a new way for the advancement of optoelctronics devices.

Keywords narrow-bandgap materials      saturable absorber      ultrafast lasers      modulator      photodetectors     
Corresponding Author(s): Xiao-Hui Li,Han Zhang   
Issue Date: 03 August 2021
 Cite this article:   
Xiao-Hui Li,Yi-Xuan Guo,Yujie Ren, et al. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1055-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/13304
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
https://doi.org/10.1126/science.1156965
3 Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett. 7(9), 2758 (2007)
https://doi.org/10.1021/nl071254m
4 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol. 3(8), 491 (2008)
https://doi.org/10.1038/nnano.2008.199
5 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
https://doi.org/10.1038/nature07719
6 A. Pospischil and T. Mueller, Optoelectronic devices based on atomically thin transition metal dichalcogenides, Appl. Sci. (Basel) 6(3), 78 (2016)
https://doi.org/10.3390/app6030078
7 P. F. Chen, N. Li, X. Z. Chen, W.-J. Ong, and X. J. Zhao, The rising star of two-dimensional black phosphorus beyond graphene: Synthesis, properties and electronic applications, 2D Materials 5, 014002 (2017)
https://doi.org/10.1088/2053-1583/aa8d37
8 A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. P. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed.53(25), 6425 (2014)
https://doi.org/10.1002/anie.201403530
9 T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, and H. Zhang, Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field, Nanoscale 10(37), 17617 (2018)
https://doi.org/10.1039/C8NR03068E
10 C. Wang, L. Wang, X. Li, W. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser, Nanotechnology 30(2), 025204 (2019)
https://doi.org/10.1088/1361-6528/aae8c1
11 M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, S. K. Turitsyn, Carbon nanotubes for ultrafast fiber lasers, Nanophotonics 6(1), 1 (2016)
https://doi.org/10.1515/nanoph-2015-0156
12 Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer grapheme as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
https://doi.org/10.1002/adfm.200901007
13 I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene, Appl. Phys. Lett. 102(19),191109 (2013)
https://doi.org/10.1063/1.4805074
14 S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber, Opt. Lett. 38(10), 1745 (2013)
https://doi.org/10.1364/OL.38.001745
15 E. Ugolotti, A. Schmidt, V. Petrov, J. Wan Kim, D. I. Yeom, F. Rotermund, S. Bae, B. Hee Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, Graphene mode-locked femtosecond Yb:KLuW laser, Appl. Phys. Lett. 101(16), 161112 (2012)
https://doi.org/10.1063/1.4760265
16 K. F. Mak, J. Shan, and T. F. Heinz, Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons, Phys. Rev. Lett. 106(4), 046401 (2011)
https://doi.org/10.1103/PhysRevLett.106.046401
17 G. Demetriou, H. T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, and A. K. Kar, Nonlinear optical properties of multilayer graphene in the infrared, Opt. Express 24(12), 13033 (2016)
https://doi.org/10.1364/OE.24.013033
18 T. Winzer, R. Ciesielski, M. Handloser, A. Comin, A. Hartschuh, and E. Malic, Microscopic view on the ultrafast photoluminescence from photoexcited graphene, Nano Lett. 15(2), 1141 (2015)
https://doi.org/10.1021/nl504176z
19 K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Photoexcitation cascade and multiple hot-carrier generation in grapheme, Nat. Phys. 9, 248 (2013)
https://doi.org/10.1038/nphys2564
20 M. Breusing, C. Ropers, and T. Elsaesser, Ultrafast carrier dynamics in graphite, Phys. Rev. Lett. 102(8), 086809 (2009)
https://doi.org/10.1103/PhysRevLett.102.086809
21 M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer, Phys. Rev. B 83(15), 153410(2011)
https://doi.org/10.1103/PhysRevB.83.153410
22 P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene, Nano Lett. 8(12), 4248 (2008)
https://doi.org/10.1021/nl8019399
23 C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, Ultrafast photoluminescence from graphene, Phys. Rev. Lett. 105(12), 127404 (2010)
https://doi.org/10.1103/PhysRevLett.105.127404
24 L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
https://doi.org/10.1364/PRJ.3.000214
25 Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength, Appl. Phys. Lett. 108(22), 221901 (2016)
https://doi.org/10.1063/1.4953072
26 Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer grapheme as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
https://doi.org/10.1002/adfm.200901007
27 S. R. Bongu, P. B. Bisht, R. C. K. Namboodiri, P. Nayak, S. Ramaprabhu, T. J. Kelly, C. Fallon, and J. T. Costello, Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping, J. Appl. Phys. 116(7), 073101 (2014)
https://doi.org/10.1063/1.4893547
28 J. J. Dean and H. M. V. Driel, Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment, Phys. Rev. B 82(12), 3893(2010)
https://doi.org/10.1103/PhysRevB.82.125411
29 M. Zhang, G. Li, and L. Li, Graphene nanoribbons generate a strong third-order nonlinear optical response upon intercalating hexagonal boron nitride, J. Mater. Chem. C 2(8), 1482 (2014)
https://doi.org/10.1039/c3tc31847h
30 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
31 H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res. 9(6), 1543 (2016)
https://doi.org/10.1007/s12274-016-1034-9
32 J. Liu, H. Cao, B. Jiang, Y. Xue, and L. Fu, Newborn 2D materials for flexible energy conversion and storage, Science China Mater. 59(6), 459 (2016)
https://doi.org/10.1007/s40843-016-5055-5
33 K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)
https://doi.org/10.1038/nphoton.2015.282
34 R. I. Woodward and Kelleher, Saturable absorbers for fibre lasers, Appl. Sci. (Basel) 5(4), 1440 (2015)
https://doi.org/10.3390/app5041440
35 T. Shishidou, A. J. Freeman, and R. Asahi, Effect of GGA on the half-metallicity of the itinerant ferromagnet, Phys. Rev. B 64(18), 180401(2001)
https://doi.org/10.1103/PhysRevB.64.180401
36 K. Takada, H. Sakurai, E. Takayama-Muromachi, E Izumi, R. Dilanian, and T. Sasaki, Superconductivity in two-dimensional CoO2 layers, Nature 422(6927), 53 (2003)
https://doi.org/10.1038/nature01450
37 J. T. Jang, S. Jeong, J. W. Seo, M. C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, Ultrathin zirconium disulfide nanodiscs, J. Am. Chem. Soc. 133(20), 7636 (2011)
https://doi.org/10.1021/ja200400n
38 J. W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim, and J. Cheon, Twodimensional nanosheet crystals, Angew. Chem. Int. Ed. Engl. 46(46), 8828 (2007)
https://doi.org/10.1002/anie.200703175
39 M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, and S. H. Yu, Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation, ACS Nano 8(4), 3970 (2014)
https://doi.org/10.1021/nn500880v
40 C. Altavilla, M. Sarno, and P. Ciambelli, A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W), Chem. Mater. 23(17), 3879 (2011)
https://doi.org/10.1021/cm200837g
41 S. Jeong, D. Yoo, J. T. Jang, M. Kim, and J. Cheon, Welldefined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols, J. Am. Chem. Soc. 134(44), 18233 (2012)
https://doi.org/10.1021/ja3089845
42 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
43 B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Intrinsic electronic transport properties of highquality monolayer and bilayer MoS2, Nano Lett. 13(9), 4212 (2013)
https://doi.org/10.1021/nl401916s
44 D. Lembke and A. Kis, Breakdown of high-performance monolayer MoS2 transistors, ACS Nano 6(11), 10070 (2012)
https://doi.org/10.1021/nn303772b
45 G. Eda and S. A. Maier, Two-dimensional crystals: Managing light for optoelectronics, ACS Nano 7(7), 5660 (2013)
https://doi.org/10.1021/nn403159y
46 L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett. 14(11), 6275(2014)
https://doi.org/10.1021/nl502603d
47 Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors Be? Nano Lett. 11(9), 3768 (2011)
https://doi.org/10.1021/nl2018178
48 Y. J. Zhang, J. T. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors, Nano Lett. 12(3), 1136 (2012)
https://doi.org/10.1021/nl2021575
49 K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)
https://doi.org/10.1103/PhysRevB.85.115317
50 B. Radisavljevic, M. B. Whitwick, and A. Kis, Correction to integrated circuits and logic operations based on singlelayer MoS2, ACS Nano 7(4), 3729 (2013)
https://doi.org/10.1021/nn400553g
51 H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)
https://doi.org/10.1021/nl302015v
52 H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett. 12(7), 3695 (2012)
https://doi.org/10.1021/nl301485q
53 F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett. 13(2), 668 (2013)
https://doi.org/10.1021/nl3043079
54 R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, Electroluminescence in single layer MoS2, Nano Lett. 13(4), 1416 (2013)
https://doi.org/10.1021/nl400516a
55 H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics, Opt. Express 22(6), 7249 (2014)
https://doi.org/10.1364/OE.22.007249
56 R. Hao, J. M. Jin, X. L. Peng, and E. Li, Dynamic control of wideband slow wave in graphene based waveguides, Opt. Lett. 39(11), 3094 (2014)
https://doi.org/10.1364/OL.39.003094
57 H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber, Opt. Express 22(14), 17341 (2014)
https://doi.org/10.1364/OE.22.017341
58 K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers, Opt. Express 23(9), 11453 (2015)
https://doi.org/10.1364/OE.23.011453
59 P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, Microfiber-based WS2-film saturable absorber for ultra-fast photonics, Opt. Mater. Express 5(3), 479 (2015)
https://doi.org/10.1364/OME.5.000479
60 M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, Microfiberbased few-layer MoS2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser, Opt. Express 22(19), 22841 (2014)
https://doi.org/10.1364/OE.22.022841
61 Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 Saturable Absorber, J. Lightwave Technol. 32(24), 4679 (2014)
https://doi.org/10.1109/JLT.2014.2362147
62 L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
63 H. H. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)
https://doi.org/10.1038/nnano.2014.85
64 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An Unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
65 M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347(2014)
https://doi.org/10.1021/nl5008085
66 N. Junhong, L. Young Tack, L. Jung Ah, H. Do Kyung, K. Gyu-Tae, C. Won Kook, and S. Yong-Won, Few-layer black phosphorus field-effect transistors with reduced current fluctuation, ACS Nano, 8(11), 11753 (2014)
https://doi.org/10.1021/nn5052376
67 Z. B. Yang, J. H. Hao, S. G. Yuan, S. H. Lin, H. M. Yau, J. Y. Dai, and S. P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27(25), 3748 (2015)
https://doi.org/10.1002/adma.201500990
68 T. Hong, B. Chamlagain, W. Z. Lin, H. J. Chuang, M. H. Pan, Z. X. Zhou, and Y. Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors, Nanoscale 6(15), 8978 (2014)
https://doi.org/10.1039/C4NR02164A
69 Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, Metal-ion-modified black phosphorus with enhanced stability and transistor performance, Adv. Mater. 29, (2017)
https://doi.org/10.1002/adma.201703811
70 Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
https://doi.org/10.1039/C7MH00543A
71 M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, and C. M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale 9(36), 13384 (2017)
https://doi.org/10.1039/C7NR03318D
72 Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun, Y. Yao, S. Li, Q. Bao, H. Zhang, and Y. Zhang, Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility, Adv. Funct. Mater. 27(38), 1702211 (2017)
https://doi.org/10.1002/adfm.201702211
73 M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)
https://doi.org/10.1021/nl5008085
74 N. Youngblood, C. Chen, S. J. Koester, and M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)
https://doi.org/10.1038/nphoton.2015.23
75 H. T. Yuan, X. G. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. J. Ye, Y. Hikita, Z. X. Shen, S. C. Zhang, X. H. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction, Nat. Nanotechnol. 10(8), 707 (2015)
https://doi.org/10.1038/nnano.2015.112
76 J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
77 Y. Li, S. Yang, and J. Li, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field, J. Phys. Chem. C 118(41), 23970 (2014)
https://doi.org/10.1021/jp506881v
78 J. Dai and X. C. Zeng, Bilayer phosphorene, J. Phys. Chem. Lett. 5(7), 1289 (2014)
https://doi.org/10.1021/jz500409m
79 A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. Engl. 53(25), 6425 (2014)
https://doi.org/10.1002/anie.201403530
80 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
81 C. Y. Chen, Z. J. Xie, Y. Feng, H. M. Yi, A. J. Liang, S. L. He, D. X. Mou, J. F. He, Y. Y. Peng, X. Liu, Y. Liu, L. Zhao, G. D. Liu, X. L. Dong, J. Zhang, L. Yu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, C. T. Chen, Z. Y. Xu, and X. J. Zhou, Tunable Dirac fermion dynamics in topological insulators, Sci. Rep. 3(10), 2411 (2013)
https://doi.org/10.1038/srep02411
82 C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker: Erratum, Opt. Express 21(1), 444 (2013)
https://doi.org/10.1364/OE.21.000444
83 H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets, Opt. Express 23(10), 13376 (2015)
https://doi.org/10.1364/OE.23.013376
84 X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, PVP-assisted solvothermal synthesis of highyielded Bi2Te3 hexagonal nanoplates: Application in passively Q-switched fiber laser, Sci. Rep. 5(1), 15868 (2015)
https://doi.org/10.1038/srep15868
85 H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers, Laser Photon. Rev. 7(6), L77 (2013)
https://doi.org/10.1002/lpor.201300084
86 H. Huang, Y. Li, Q. Li, B. Li, Z. Song, W. Huang, C. Zhao, H. Zhang, S. Wen, D. Carroll, and G. Fang, Field electron emission of layered Bi2Se3 nanosheets with atomthick sharp edges, Nanoscale 6(14), 8306 (2014)
https://doi.org/10.1039/c3nr06015b
87 Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, Bi2Se3 Q-switched Nd:YAG ceramic waveguide laser, Opt. Lett. 40(4), 637 (2015)
https://doi.org/10.1364/OL.40.000637
88 X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, Bismuth telluride topological insulator nanosheet saturable absorbers for Q-switched modelocked Tm:ZBLAN waveguide lasers, Ann. Phys. 528(7–8), 543 (2016)
https://doi.org/10.1002/andp.201600014
89 M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
https://doi.org/10.1364/OL.40.004767
90 C. R. Ast and H. Hochst, Electronic structure of a bismuth bilayer, Phys. Rev. B 67(11), 181 (2003)
https://doi.org/10.1103/PhysRevB.67.113102
91 Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and P. Hofmann, Strong spin–orbit splitting on Bi surfaces, Phys. Rev. Lett. 93(4), 046403 (2004)
https://doi.org/10.1103/PhysRevLett.93.046403
92 E. J. Tichovolsky and J. G. Mavroides, Magnetoreflection studies on the band structure of bismuth-antimony alloys, Solid State Commun. 7(13), 927 (1969)
https://doi.org/10.1016/0038-1098(69)90544-4
93 Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. Le Fevre, F. Bertran, and A. Taleb-Ibrahimi, Non-trivial surface-band dispersion on bi(111), New J. Phys. 15, 033041 (2013)
https://doi.org/10.1088/1367-2630/15/3/033041
94 L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong, Phase transitions of Dirac electrons in bismuth, Science 321(5888), 547 (2008)
https://doi.org/10.1126/science.1158908
95 S. Murakami, Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling, Phys. Rev. Lett. 97(23), 236805 (2006)
https://doi.org/10.1103/PhysRevLett.97.236805
96 J. P. Issi, Low temperature transport properties of the group V semimetals, Aust. J. Phys. 32(6), 585 (1979)
https://doi.org/10.1071/PH790585
97 P. Hofmann, The surfaces of bismuth: Structural and electronic properties, Prog. Surf. Sci. 81(5), 191 (2006)
https://doi.org/10.1016/j.progsurf.2006.03.001
98 Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Superconductivity modulated by quantum size effects, Science 306(5703), 1915 (2004)
https://doi.org/10.1126/science.1105130
99 L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability, Laser Photon. Rev. 12(1), 1870012 (2018)
https://doi.org/10.1002/lpor.201870012
100 J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, Broadband nonlinear optical response of graphene dispersions, Adv. Mater. 21(23), 2430 (2009)
https://doi.org/10.1002/adma.200803616
101 H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, Large energy pulse generation modulated by grapheme epitaxially grown on silicon carbide, ACS Nano 4(12), 7582 (2010)
https://doi.org/10.1021/nn102280m
102 H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett. 96(11), 111112 (2010)
https://doi.org/10.1063/1.3367743
103 J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, Tm3/Ho3+ co-doped LiGd(MoO4)2 crystal as laser gain medium around 20 μm, Opt. Mater. Express 2(8), 878 (2012)
https://doi.org/10.1364/OME.2.001064
104 Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)
https://doi.org/10.1364/OE.20.023201
105 E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, Coherent nonlinear optical response of graphene, Phys. Rev. Lett. 105(9), 097401 (2010)
https://doi.org/10.1103/PhysRevLett.105.097401
106 M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials, Appl. Phys. Lett. 98(8), 081106 (2011)
https://doi.org/10.1063/1.3553500
107 W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, The nonlinear optical properties of coupling and decoupling grapheme layers, AIP Adv. 3(4), 042123 (2013)
https://doi.org/10.1063/1.4802889
108 K. Wang, J. Wang, J. Fan, M. Lotya, A. O’ Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano 7(10), 9260 (2013)
https://doi.org/10.1021/nn403886t
109 X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance, Nanoscale 7(7), 2978 (2015)
https://doi.org/10.1039/C4NR07164F
110 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
111 A. Pulkin and O. V. Yazyev, Spin- and valley-polarized transport across line defects in monolayer MoS2, Phys. Rev. B 93(4), 041419 (2016)
https://doi.org/10.1103/PhysRevB.93.041419
112 Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films, J. Mater. Chem. C 2(31), 6319 (2014)
https://doi.org/10.1039/C4TC00909F
113 K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets, Small 11(6), 694 (2015)
https://doi.org/10.1002/smll.201400541
114 D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, WS2 mode-locked ultrafast fiber laser, Sci. Rep. 5(1), 7965 (2015)
https://doi.org/10.1038/srep07965
115 R. F. Wei, H. Zhang, Z. L. Hu, T. Qiao, X. He, Ultrabroadband nonlinear saturable absorption of high-yield MoS2 nanosheets, Nanotechnology 27(30), 305203 (2016)
https://doi.org/10.1088/0957-4484/27/30/305203
116 F. Bernard, Z. Han, S. P. Gorza, and P. Emplit, Towards mode-locked fiber laser using topological insulators, Nonlin. Photon. 5, 2012
https://doi.org/10.1364/NP.2012.NTh1A.5
117 C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelengthtunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express 20(25), 27888 (2012)
https://doi.org/10.1364/OE.20.027888
118 C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett. 101(21), 118(2012)
https://doi.org/10.1063/1.4767919
119 S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, Third order nonlinear optical property of Bi2Se3, Opt. Express 21(2), 2072 (2013)
https://doi.org/10.1364/OE.21.002072
120 Z. Q. Luo, C. Liu, Y. Z. Huang, D. D. Wu, J. Y. Wu, H. Y. Xu, Z. P. Cai, Z. Q. Lin, L. P. Sun, and J. Weng, Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength, IEEE J. Sel. Top. Quant. 902708 2014, 20(5)
121 M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator, Opt. Express 22(7), 7865 (2014)
https://doi.org/10.1364/OE.22.007865
122 B. Weitzel and H. Micklitz, Superconductivity in granular systems built from well-defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity, Phys. Rev. Lett. 66(3), 385 (1991)
https://doi.org/10.1103/PhysRevLett.66.385
123 L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, Widely spaced bound states in a soliton fiber laser with grapheme saturable absorber, IEEE Photon. Technol. Lett. 25(12), 1184 (2013)
https://doi.org/10.1109/LPT.2013.2262267
124 L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, and H. Lv, Thermoelectric properties of a monolayer bismuth, J. Phys. Chem. C 118(2), 904 (2014)
https://doi.org/10.1021/jp411383j
125 Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, and S. Blügel, First-principles investigation of structural and electronic properties of ultrathin Bi films, Phys. Rev. B 77(4), 045428 (2008)
https://doi.org/10.1103/PhysRevB.77.045428
126 B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)
https://doi.org/10.1364/OE.26.022750
127 Q. Q. Yang, R. T. Liu, C. Huang, Y. F. Huang, L. F. Gao, B. Sun, Z. P. Huang, L. Zhang, C. X. Hu, Z. Q. Zhang, C. L. Sun, Q. Wang, Y. L. Tang, and H. L. Zhang, 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers, Nanoscale 10(45), 21106 (2018)
https://doi.org/10.1039/C8NR06797J
128 P. Zijlstra, J. W. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature 459(7245), 410 (2009)
https://doi.org/10.1038/nature08053
129 D. Tan, Y. Yamada, S. Zhou, Y. Shimotsuma, K. Miura, and J. Qiu, Carbon nanodots with strong nonlinear optical response, Carbon 69, 638 (2014)
https://doi.org/10.1016/j.carbon.2013.12.056
130 R. L. Gieseking, S. Mukhopadhyay, C. Risko, and J. L. Brédas, Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications, ACS Photon. 1(3), 261 (2014)
https://doi.org/10.1021/ph4001444
131 W. Man, C. Yu, Z. Han, and W. Shuangchun, Nanosecond Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range based on topological insulator, IEEE J. Quantum Electron. 50, 393 (2014)
https://doi.org/10.1109/JQE.2014.2314774
132 Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
https://doi.org/10.1109/JSTQE.2013.2295196
133 F. Yan, W. Peng, S. Liu, T. Feng, Z. Dong, and G. K. Chang, Dual-wavelength single-longitudinal-mode tmdoped fiber laser using PM-CMFBG, IEEE Photonics Technol. Lett. 27(9), 264 (2015)
https://doi.org/10.1109/LPT.2015.2403842
134 C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 midinfrared laser, Opt. Commun. 406, 158 (2018)
https://doi.org/10.1016/j.optcom.2017.05.052
135 P. Ge, J. LiuS. Jiang, Y. Xu, and B. Man, Compact Q-switched 2 m Tm:GdVO4 laser with MoS2 absorber, Photon. Res. 3(5), 256 (2015)
https://doi.org/10.1364/PRJ.3.000256
136 J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
https://doi.org/10.1364/OE.24.030289
137 Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, Ultrafast photonics application of graphdiyne in the optical communication region, Carbon 149, 336 (2019)
https://doi.org/10.1016/j.carbon.2019.04.075
138 T. C. Feng, X. H. Li, T. Chai, P. L. Guo, Y. Zhang, R. S. Liu, J. S. Liu, J. B. Lu, and Y. Q. Ge, Bismuthene nanosheets for 1-μm multipulse generation, Langmuir 36(1), 3 (2020)
https://doi.org/10.1021/acs.langmuir.9b01910
139 Z. J. Shi, W. X. Xu, X. H. Li, and Z. Hui, Cuprous sulfide for different laser pulse generation: Q-switching and mode-locking, J. Phys. Chem. C 123(46), 28370 (2019)
https://doi.org/10.1021/acs.jpcc.9b08896
140 J. Feng, X. Li, Z. Shi, C. Zheng, X. Li, D. Leng, Y. Wang, J. Liu, and L. Zhu, 2D ductile transition metal chalcogenides (TMCs): A novel hiah-performance Ag2S nanosheets for ultrafast photonics, Adv. Opt. Mater. 8(6), 1901762 (2020)
https://doi.org/10.1002/adom.201901762
141 J. S. Liu, X. H. Li, Y. X. Guo, A. Qyyum, Z. J. Shi, T. C. Feng, Y. Zhang, C. X. Jiang, and X. F. Liu, SnSe2 nanosheets for subpicosecond harmonic modelocked pulse generation, Small 15(38), 1902811 (2019)
https://doi.org/10.1002/smll.201902811
142 T. C. Feng, D. Zhang, X. H. Li, Q. Abdul, Z. J. Shi, J. B. Lu, P. L. Guo, Y. Zhang, J. S. Liu, and Q. J. Wang, SnS2 nanosheets for Er-doped fiber lasers, ACS Appl. Nanomater. (Basel) 3(1), 674 (2020)
https://doi.org/10.1021/acsanm.9b02194
143 X. H. Li, X. C. Yu, Z. P. Sun, Z. Y. Yan, B. Sun, Y. B. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction, Sci. Rep. 5(1), 16624 (2015)
https://doi.org/10.1038/srep16624
144 X. H. Li, K. Wu, Z. P. Sun, B. Meng, Y. G. Wang, Y. S. Wang, X. C. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxidebased saturable absorbers for low phase noise modelocked fiber lasers, Sci. Rep. 6(1), 25266 (2016)
https://doi.org/10.1038/srep25266
145 L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, Coexistence of polarization-locked and polarizationrotating vector solitons in a fiber laser with SESAM, Opt. Lett. 34(20), 3059 (2009)
https://doi.org/10.1364/OL.34.003059
146 L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Polarization rotation locking of vector solitons in a fiber ring laser, Opt. Express 16(14), 10053 (2008)
https://doi.org/10.1364/OE.16.010053
147 L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, Soliton trapping in fiber lasers, Opt. Express 16(13), 9528 (2008)
https://doi.org/10.1364/OE.16.009528
148 H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser, Opt. Lett. 33(20), 2317 (2008)
https://doi.org/10.1364/OL.33.002317
149 L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, Dissipative soliton trapping in normal dispersion-fiber lasers, Opt. Lett. 35(11), 1902 (2010)
https://doi.org/10.1364/OL.35.001902
150 L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Bunch of restless vector solitons in a fiber laser with SESAM, Opt. Express 17(10), 8103 (2009)
https://doi.org/10.1364/OE.17.008103
151 J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, Review of mid-infrared mode-locked laser sources in the 2.0–3.5 μm spectral region, Appl. Phys. Rev. 6(2), 021317 (2019)
https://doi.org/10.1063/1.5037274
152 G. Chang and Z. Wei, Ultrafast fiber lasers: An expanding versatile toolbox, iScience 23(5) 101101 (2020)
https://doi.org/10.1016/j.isci.2020.101101
153 C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, and B. Fu., Review on wavelengthtunable pulsed fiber lasers based on 2D materials, Opt. Laser Technol. 131, 106375 (2020)
https://doi.org/10.1016/j.optlastec.2020.106375
154 Y. Han, Y. Guo, B. Gao, C. Ma, H. Zhang, and H. Zhang, Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers, Prog. Quantum Electron. 71, 100264 (2020)
https://doi.org/10.1016/j.pquantelec.2020.100264
155 T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect, Photon. Res. 8(1), 78 (2020)
https://doi.org/10.1364/PRJ.8.000078
156 P. L. Huang, S. Lin, C. Yeh, H. Kuo, S. Huang, G. Lin, L. Li, C. Su, and W. Cheng, Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber, Opt. Express 20(3), 2460 (2012)
https://doi.org/10.1364/OE.20.002460
157 Z. Zheng, C. Zhao, S. Lu, Y. Chen, H. Li, Y. Zhang, and S. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)
https://doi.org/10.1364/OE.20.023201
158 B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 mm, IEEE J. Sel. Top. Quantum Electron. 20(5), 1100705 (2014)
https://doi.org/10.1109/JSTQE.2014.2302361
159 L. Liu, H. T. Hattori, E. G. Mironov, and A. Khaleque, Composite chromium and graphene oxide as saturable absorber in ytterbium-doped Q-switched fiber lasers, Appl. Opt. 53(6), 1173 (2014)
https://doi.org/10.1364/AO.53.001173
160 L. Li, X. Zheng, X. Chen, M. Qi, Z. Ren, J. Bai, and Z. Sun, High-power diode-side-pumped Nd:YAG solid laser mode-locked by CVD graphene, Opt. Comm. 315, 204 (2014)
https://doi.org/10.1016/j.optcom.2013.10.093
161 X. Li, W. Zou, and J. Chen, 419 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate, Opt. Lett. 39(6), 1553 (2014)
https://doi.org/10.1364/OL.39.001553
162 Q. Wen, X. Zhang, Y. Wang, Y. Wang, and H. Niu, Passively Q-switched Nd:YAG laser with graphene oxide in heavy water, IEEE Photon. J. 6(2), 1 (2014)
https://doi.org/10.1109/JPHOT.2014.2309631
163 J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, All-polarization-maintaining femtosecond fiber lasers using graphene oxide saturable absorber, IEEE Photon. Technol. Lett. 26(4), 346 (2014)
https://doi.org/10.1109/LPT.2013.2293624
164 X. He, D. N. Wang, and Z. B. Liu, Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber, IEEE Photon. Technol. Lett. 26(4), 360 (2014)
https://doi.org/10.1109/LPT.2013.2294017
165 Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express 23(10), 12823 (2015)
https://doi.org/10.1364/OE.23.012823
166 F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, Strong optical limiting behavior discovered in black phosphorus, RSC Adv. 6(24), 20027 (2016)
https://doi.org/10.1039/C6RA01607C
167 F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, Nonlinear optical effects in nitrogen-doped graphene, RSC Adv. 6(5), 3526 (2016)
https://doi.org/10.1039/C5RA19566G
168 J. L. Wu, B. Gu, N. Sheng, D. Liu, and Y. Cui, Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams, Appl. Phys. Lett. 105(17), 171113 (2014)
https://doi.org/10.1063/1.4901007
169 C. Zheng, W. Chen, S. Cai, X. Xiao, and X. Ye, Enhanced optical limiting properties of graphene oxide/triangular Pd nanocrystal composites, Mater. Lett. 131, 284 (2014)
https://doi.org/10.1016/j.matlet.2014.05.199
170 A. A. Ryzhov, I. M. Belousova, Y. Wang, H. Qi, and J. Wang, Optical limiting properties of a nonlinear multilayer Fabry–Perot resonator containing niobium pentoxide as nonlinear medium, Opt. Lett. 39(16), 4847 (2014)
https://doi.org/10.1364/OL.39.004847
171 A. Diallo, S. Zongo, P. Mthunzi, S. Rehman, S. Y. Alqaradawi, W. Soboyejo, and M. Maaza, Z-scan and optical limiting properties of Hibiscus Sabdariffa dye, Appl. Phys. B 117(3), 861 (2014)
https://doi.org/10.1007/s00340-014-5900-4
172 I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, Nonlinear optical properties of colloidal carbon nanoparticles: Nanodiamonds and carbon dots, RSC Advances 4(76), 40152 (2014)
https://doi.org/10.1039/C4RA04714A
173 P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, Third-order nonlinear optical response and optical limiting of colloidal carbon dots, Opt. Express 22(10), 12013 (2014)
https://doi.org/10.1364/OE.22.012013
174 M. J. Weber, D. Milam, and W. L. Smith, Nonlinear refractive index of glasses and crystals, Opt. Eng. 17(5), 463 (1978)
https://doi.org/10.1117/12.7972266
175 R. Adair, L. L. Chase, and S. A. Payne, Nonlinear refractive-index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Anier. B 4(6), 875 (1987)
https://doi.org/10.1364/JOSAB.4.000875
176 C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, Tin diselenide as a new saturable absorber for generation of laser pulses at 1 m, Opt. Express 25(6), 6132 (2017)
https://doi.org/10.1364/OE.25.006132
177 S. L. Wong, H. Liu, and D. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides, Prog. Cryst. Growth Charact. Mater. 62(3), 9 (2016)
https://doi.org/10.1016/j.pcrysgrow.2016.06.002
178 K. Yan, L. Fu, H. L. Peng, and Z. F. Liu, Designed CVD growth of graphene via process engineering, Acc. Chem. Res. 46(10), 2263 (2013)
https://doi.org/10.1021/ar400057n
179 D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O′ Regan, G. S. Duesberg, V. Nicolosi, and J. N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun. 6(1), 8563 (2015)
https://doi.org/10.1038/ncomms9563
180 H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2, Small 9(11), 1974 (2013)
https://doi.org/10.1002/smll.201202919
181 A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, Isolation and characterization of few-layer black phosphorus, 2D Mater. 1, 025001 (2014)
https://doi.org/10.1088/2053-1583/1/2/025001
182 S. S. Hong, W. Kundhikanjana, J. J. Cha, K. Lai, D. Kong, S. Meister, M. A. Kelly, Z. X. Shen, and Y. Cui, Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy, Nano Lett. 10(8), 3118 (2010)
https://doi.org/10.1021/nl101884h
183 L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, and A. M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J. Mater. Chem. 21(32), 11862 (2011)
https://doi.org/10.1039/c1jm11192b
184 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)
https://doi.org/10.1039/B917103G
185 J. M. Hughes, D. Aherne, and J. N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions, J. Appl. Polym. Sci. 127(6), 4483 (2013)
https://doi.org/10.1002/app.38051
186 Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery, Langmuir 26(5), 3208 (2010)
https://doi.org/10.1021/la903188a
187 A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem. C 115(13), 5422 (2011)
https://doi.org/10.1021/jp110942e
188 A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes, Small 5(16), 1841 (2009)
https://doi.org/10.1002/smll.200900242
189 G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, Exfoliation of large-area transition metal chalcogenide single layers, Sci. Rep. 5(1), 14714 (2015)
https://doi.org/10.1038/srep14714
190 J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)
https://doi.org/10.1038/ncomms3995
191 G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano 6(4), 3468 (2012)
https://doi.org/10.1021/nn300503e
192 J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O′ Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun. (Camb.) 50(87), 13338 (2014)
https://doi.org/10.1039/C4CC05752J
193 J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. L. Liu, K. S. Chen, and M. C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano 9(4), 3596 (2015)
https://doi.org/10.1021/acsnano.5b01143
194 Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)
https://doi.org/10.1021/jz9002108
195 D. Yoo, M. Kim, S. Jeong, J. Han, and J. Cheon, Chemical synthetic strategy for single-layer transition-metal chalcogenides, J. Am. Chem. Soc. 136(42), 14670 (2014)
https://doi.org/10.1021/ja5079943
196 A. N. Obraztsov, Making graphene on a large scale, Nat. Nanotechnol. 4(4), 212 (2009)
https://doi.org/10.1038/nnano.2009.67
197 T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, Growth intermediates for CVD graphene on Cu(111): Carbon clusters and defective graphene, J. Am. Chem. Soc. 135(22), 8409 (2013)
https://doi.org/10.1021/ja403583s
198 S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, and M. Jiang, Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride, Nat. Commun. 6(1), 6499 (2015)
https://doi.org/10.1038/ncomms7499
199 Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z. Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of fewlayer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)
https://doi.org/10.1021/nl1023707
200 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J.H. Ahn, B. H. Hong, and Iijima. S. , Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)
https://doi.org/10.1038/nnano.2010.132
201 Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater. 10(6), 443 (2011)
https://doi.org/10.1038/nmat3010
202 Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary, ACS Nano 7(10), 8963 (2013)
https://doi.org/10.1021/nn403454e
203 Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, and J. Kong, van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)
https://doi.org/10.1021/nl204562j
204 C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, Synthesis and optical properties of largearea single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition, Adv. Opt. Mater. 2(2), 131 (2014)
https://doi.org/10.1002/adom.201300428
205 W. W. Piper and S. J. Polich, Vapor‐phase growth of single crystals of II–VI compounds, J. Appl. Phys. 32(7), 1278 (1961)
https://doi.org/10.1063/1.1736219
206 H. Li, J. Cao, W. Zheng, Y. Chen, D. Wu, W. Dang, K. Wang, H. Peng, and Z. Liu, Controlled synthesis of topological insulator nanoplate arrays on mica, J. Am. Chem. Soc. 134(14), 6132 (2012)
https://doi.org/10.1021/ja3021395
207 Z. H. Sun and H. X. Chang, Graphene and graphenelike two-dimensional materials in photodetection: Mechanisms and methodology, ACS Nano 8(5), 4133 (2014)
https://doi.org/10.1021/nn500508c
208 D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential, Nano Lett. 10(6), 2245 (2010)
https://doi.org/10.1021/nl101260j
209 K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett. 12(1), 161 (2012)
https://doi.org/10.1021/nl203249a
210 P. Sutter, J. Lahiri, P. Albrecht, and E. Sutter, Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films, ACS Nano 5(9), 7303 (2011)
https://doi.org/10.1021/nn202141k
211 K. H. Lee, H. J. Shin, J. Lee, I. Y. Lee, G. H. Kim, J. Y. Choi, and S. W. Kim, Large-scale synthesis of highquality hexagonal boron nitride nanosheets for large-area graphene electronics, Nano Lett. 12(2), 714 (2012)
https://doi.org/10.1021/nl203635v
212 K. Ueno, K. Saiki, T. Shimada, and A. Koma, Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica, J. Vac. Sci. Technol. A 8(1), 68 (1990)
https://doi.org/10.1116/1.576983
213 Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, and J. A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene, Nano Lett. 14(12), 6936 (2014)
https://doi.org/10.1021/nl503144a
214 W. Yang, G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater. 12(9), 792 (2013)
https://doi.org/10.1038/nmat3695
215 P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, and S. Ruan, Largearea tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)
https://doi.org/10.1039/C6NR09183K
216 A. Azizi, S. Eichfeld, G. Geschwind, K. H. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, and N. Alem, Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides, ACS Nano 9(5), 4882 (2015)
https://doi.org/10.1021/acsnano.5b01677
217 X. Liu, I. Balla, H. Bergeron, G. P. Campbell, M. J. Bedzyk, and M. C. Hersam, Rotationally commensurate growth of MoS2 on epitaxial graphene, ACS Nano 10(1), 1067 (2016)
https://doi.org/10.1021/acsnano.5b06398
218 Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
https://doi.org/10.1364/OE.20.027283
219 Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
https://doi.org/10.1038/srep16372
220 G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
https://doi.org/10.1021/am403205v
221 Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photon. J. 4(3), 869 (2012)
https://doi.org/10.1109/JPHOT.2012.2199102
222 Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
https://doi.org/10.1002/adfm.200901007
223 M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Tm-doped fiber laser mode-locked by graphenepolymer composite, Opt. Express 20(22), 25077 (2012).
https://doi.org/10.1364/OE.20.025077
224 D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, Graphene Q-switched, tunable fiber laser, Appl. Phys. Lett. 98(7), 073106 (2011)
https://doi.org/10.1063/1.3552684
225 X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)
https://doi.org/10.1002/adma.201605886
226 S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, Broadband few-layer MoS2 saturable absorbers, Adv. Mater. 26(21), 3538 (2014)
https://doi.org/10.1002/adma.201306322
227 H. Chen, X. Wen, J. Zhang, T. Wu, Y. Gong, X. Zhang, J. Yuan, C. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Zhang, and J. Zheng, Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures, Nat. Commun. 7(1), 12512 (2016)
https://doi.org/10.1038/ncomms12512
228 P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, and S. Ruan, Largearea tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)
https://doi.org/10.1039/C6NR09183K
229 X. Li, S. Zhang, Y. Hao, and Z. Yang, Pulse bursts with a controllable number of pulses from a mode-locked Ybdoped all fiber laser system, Opt. Express 22(6), 6699 (2014)
https://doi.org/10.1364/OE.22.006699
230 Z. Wang, Y. Xu, S. C. Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, and H. Zhang, Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser, IEEE Photonics J. 8(5), 1503310 (2016)
https://doi.org/10.1109/JPHOT.2016.2598085
231 J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
https://doi.org/10.1364/OE.23.022643
232 Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
https://doi.org/10.1364/OE.24.025933
233 Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
https://doi.org/10.1039/C7TC00071E
234 J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
https://doi.org/10.1364/OE.24.030289
235 J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
https://doi.org/10.1038/srep42357
236 Y. Wang, J. Li, L. Han, R. Lu, Y. Hu, Z. Li, and Y. Liu, Q-switched Tm3+-doped fiber laser with a microfiber based black phosphorus saturable absorber, Laser Phys. 26(6), 065104 (2016)
https://doi.org/10.1088/1054-660X/26/6/065104
237 Y. Zhang, X. Li, A. Qyyum, T. Feng, P. Guo, J. Jiang, and H. Zheng, PbS nanoparticles for ultrashort pulse generation in optical communication region, Particle & Particle Systems Characterization 35(11), 1800341 (2018)
https://doi.org/10.1002/ppsc.201800341
238 L. Yun, Y. Qiu, C. Yang, J. Xing, K. Yu, X. Xu, and W. Wei, PbS quantum dots as a saturable absorber for ultrafast laser, Photon. Res. 6(11), 1028 (2018)
https://doi.org/10.1364/PRJ.6.001028
239 J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, and L. Su, Bismuth nanosheets as a Q-switcher for a midinfrared erbium-doped SrF2 laser, Photon. Res. 6(8), 762 (2018)
https://doi.org/10.1364/PRJ.6.000762
240 M. Pumera and Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus, Adv. Mater. 29(21), 1605299 (2017)
https://doi.org/10.1002/adma.201605299
241 L. Lu, W. Wang, L. Wu, X. Jiang, Y. Xiang, J. Li, D. Fan, and H. Zhang, All-optical switching of two continuous waves in few layer bismuthene based on spatial crossphase modulation, ACS Photon. 4(11), 2852 (2017)
https://doi.org/10.1021/acsphotonics.7b00849
242 Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics, IEEE Photon. J. 7(2), 1500911 (2015)
https://doi.org/10.1109/JPHOT.2015.2406754
243 Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen, J. Liu, X. Fu, C. Zhao, and H. Zhang, Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer, Opt. Express 23(6), 7681 (2015)
https://doi.org/10.1364/OE.23.007681
244 M. Liu, N. A. Zhao, H. Liu, X.W. Zheng, A.P. Luo, Z.C. Luo, W.C. Xu, C.J. Zhao, H. Zhang, and S.C. Wen, Dualwavelength harmonically mode-locked fiber laser with topological insulator saturable absorber, IEEE Photon. Technol. Lett. 26(10), 983 (2014)
https://doi.org/10.1109/LPT.2014.2311101
245 X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photon. Rev. 12(2), 1700229 (2018)
https://doi.org/10.1002/lpor.201700229
246 X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser, Laser Phys. Lett. 15(8), 085805 (2018)
https://doi.org/10.1088/1612-202X/aac91d
247 Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 μm, Laser Phys. Lett. 16(1), 015803 (2019)
https://doi.org/10.1088/1612-202X/aaef99
248 Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)
https://doi.org/10.1088/2053-1583/aa87c1
249 P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
https://doi.org/10.1021/acsami.7b01709
250 Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)
https://doi.org/10.1021/nn901703e
251 W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, Ultrafast all-optical graphene modulator, Nano Lett. 14(2), 955 (2014)
https://doi.org/10.1021/nl404356t
252 J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
https://doi.org/10.1038/srep30361
253 X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, Graphene-clad microfibre saturable absorber for ultrafast fibre lasers, Sci. Rep. 6(1), 26024 (2016)
https://doi.org/10.1038/srep26024
254 S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, 2D materials for optical modulation: Challenges and opportunities, Adv. Mater. 29(14), 1606128 (2017)
https://doi.org/10.1002/adma.201606128
255 F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Gate-variable optical transitions in graphene, Science 320(5873), 206 (2008)
https://doi.org/10.1126/science.1152793
256 Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)
https://doi.org/10.1021/nn901703e
257 D. B. S. Soh, R. Hamerly, and H. Mabuchi, Comprehensive analysis of the optical Kerr coefficient of graphene, Phys. Rev. A 94, 023845 (2016)
https://doi.org/10.1103/PhysRevA.94.023845
258 E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37(12), 1273 (2012)
https://doi.org/10.1557/mrs.2012.203
259 Y. Wu, X. Yan, P. Meng, P. Sun, G. Cheng, and R. Zheng, Carbon black/octadecane composites for room temperature electrical and thermal regulation, Carbon 94, 417 (2015)
https://doi.org/10.1016/j.carbon.2015.06.037
260 L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, and H. Zhang, MXene-based nonlinear optical information converter for all-optical modulator and switcher, Laser Photon. Rev. 12(12), 215 (2018)
https://doi.org/10.1002/lpor.201800215
261 G. M. Paternò, L. Moretti, A. J. Barker, Q. Chen, K. Müllen, A. Narita, G. Cerullo, F. Scotognella, and G. Lanzani, Pump-push-probe for ultrafast all-optical switching: The case of a nanographene molecule, Adv. Funct. Mater. 29(21), 1805249 (2018)
https://doi.org/10.1002/adfm.201805249
262 J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing: Toward high performances and enhanced stability, ACS Photon. 4(6), 1466 (2017)
https://doi.org/10.1021/acsphotonics.7b00231
263 S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
https://doi.org/10.1002/adom.201500347
264 Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, All-optical phosphorene phase modulator with enhanced stability under ambient conditions, Laser Photon. Rev. 12(6), 1800016 (2018)
https://doi.org/10.1002/lpor.201800016
265 J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation, Adv. Opt. Mater. 5(9), 1700026 (2017)
https://doi.org/10.1002/adom.201700026
266 B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)
https://doi.org/10.1038/ncomms1787
267 B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, Unique prospects for graphenebased terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)
https://doi.org/10.1063/1.3636435
268 Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)
https://doi.org/10.1038/srep07409
269 Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)
https://doi.org/10.1021/nl403751p
270 N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, Electrically tunable damping of plasmonic resonances with graphene, Nano Lett. 12(10), 5202 (2012)
https://doi.org/10.1021/nl302322t
271 Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, Alloptical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)
https://doi.org/10.1021/acsphotonics.5b00469
272 S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
https://doi.org/10.1038/nmat3433
273 Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015).
https://doi.org/10.1088/2053-1583/2/3/035011
274 X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
https://doi.org/10.1002/adfm.201606834
275 P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
https://doi.org/10.1021/acsnano.6b03458
276 Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, Small 13(11), 1602896 (2017)
https://doi.org/10.1002/smll.201602896
277 H. Xie, Z. Li, Z. Sun, J. Shao, X. F. Yu, Z. Guo, J. Wang, Q. Xiao, H. Wang, Q. Q. Wang, H. Zhang, and P. K. Chu, Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy, Small 12(30), 4136 (2016)
https://doi.org/10.1002/smll.201601050
278 W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, and O. C. Farokhzad, Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy, Angew. Chem. Int. Ed. Engl. 56(39), 11896 (2017)
https://doi.org/10.1002/anie.201703657
279 F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
https://doi.org/10.1039/C7TB01068K
280 M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
https://doi.org/10.1073/pnas.1714421115
281 T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, Flexible transparent electronic gas sensors, Small 12(28), 3748 (2016)
https://doi.org/10.1002/smll.201601049
282 P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing, Small 11(40), 5409 (2015)
https://doi.org/10.1002/smll.201501772
283 T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
https://doi.org/10.1039/C6NR08265C
284 X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors, J. Mater. Chem. A 5(14), 6581 (2017)
https://doi.org/10.1039/C7TA00455A
285 R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
https://doi.org/10.1016/j.nanoen.2017.02.037
286 D. Mao, S. L. Zhang, Y. D. Wang, X. T. Gan, W. D. Zhang, T. Mei, Y. G. Wang, Y. S. Wang, H. B. Zeng, and J. L. Zhao, WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 m, Opt. Express 23(21), 27509 (2015)
https://doi.org/10.1364/OE.23.027509
[1] Ying-Ying Li, Bo Gao, Ying Han, Bing-Kun Chen, Jia-Yu Huo. Optoelectronic characteristics and application of black phosphorus and its analogs[J]. Front. Phys. , 2021, 16(4): 43301-.
[2] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed