Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (5) : 52503    https://doi.org/10.1007/s11467-021-1084-7
RESEARCH ARTICLE
Helicity-dependent time delays in multiphoton ionization by two-color circularly polarized laser fields
Qing-Hua Ke1, Yue-Ming Zhou1(), Yi-Jie Liao1, Jin-Tai Liang1, Yong Zhao1, Jia Tan1, Min Li1, Pei-Xiang Lu1,2,3()
1. School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
3. CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
 Download: PDF(1164 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By numerically solving the three-dimensional time-dependent Schrödinger equation, we have invest-tigated multiphoton ionization of hydrogen atom in the two-color circularly polarized (TCCP) laser fields consisting of a strong 400 nm and a much weaker 800 nm pulses. Due to the presence of perturb-bative 800 nm laser pulse, sideband peaks emerge between the above-threshold ionization rings in the photoelectron momentum distributions. Our numerical results show that the sideband peaks exhibit one-lobe structure in the co-rotating TCCP laser fields, while it displays the three-lobe structure in the counter-rotating TCCP laser fields. Moreover, the photoelectron yield of sidebands in the co-rotating TCCP fields is much higher than those of the counter-rotating TCCP fields. These phenomena could be well explained from the perspective of the photon-absorption channels via the selection rules. In-terestingly, an obvious phase shift between the sidebands of different orders from the co-rotating and counter-rotating TCCP fields is observed. This shift indicates the helicity-dependent time delay in the one-photon continuum-continuum transition process.

Keywords helicity-dependent time delay      TCCP      multiphoton ionization     
Corresponding Author(s): Yue-Ming Zhou,Pei-Xiang Lu   
Issue Date: 23 August 2021
 Cite this article:   
Qing-Hua Ke,Yue-Ming Zhou,Yi-Jie Liao, et al. Helicity-dependent time delays in multiphoton ionization by two-color circularly polarized laser fields[J]. Front. Phys. , 2021, 16(5): 52503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1084-7
https://academic.hep.com.cn/fop/EN/Y2021/V16/I5/52503
1 P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. G. Muller, and P. Agostini, Observation of a train of attosecond pulses from high harmonic generation, Science 292(5522), 1689 (2001)
https://doi.org/10.1126/science.1059413
2 E. S. Toma and H. G. Muller, Calculation of matrix el-ements for mixed extreme-ultraviolet-infrared two-photon above-threshold ionization of argon, J. Phys. B 35(16), 3435 (2002)
https://doi.org/10.1088/0953-4075/35/16/306
3 H. G. Muller, Reconstruction of attosecond harmonic beat-ing by interference of two-photon transitions, Appl. Phys. B 74(S1), s17 (2002)
https://doi.org/10.1007/s00340-002-0894-8
4 A. Maquet and R. Taïeb, Two-colour IR+ XUV spectro-scopies: The “soft-photon approximation”, J. Mod. Opt. 54(13–15), 1847 (2007)
https://doi.org/10.1080/09500340701306751
5 M. Swoboda, J. M. Dahlstrom, T. Ruchon, P. Johns.son, J. Mauritsson, A. L’ Huillier, and K. J. Schafer, Intensity dependence of laser-assisted attosecond photo ionization spectra, Laser Phys. 19(8), 1591 (2009)
https://doi.org/10.1134/S1054660X09150390
6 G. Laurent, W. Cao, H. Li, Z. Wang, I. Ben-Itzhak, and C. L. Cocke, Attosecond control of orbital parity mix interfere-ences and the relative phase of even and odd harmonics in an attosecond pulse train, Phys. Rev. Lett. 109(8), 083001 (2012)
https://doi.org/10.1103/PhysRevLett.109.083001
7 K. Klünder, J. M. Dahlstrom, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guenot, P. Johnsson, J. Caillat, J. Mau-ritsson, A. Maquet, R. Taieb, and A. L’ Huillier, Prob-ing single-photon ionization on the attosecond timescale, Phys. Rev. Lett. 106(14), 143002 (2011)
https://doi.org/10.1103/PhysRevLett.106.143002
8 J. M. Dahlström, A. L’ Huillier, and A. Maquet, Introduc-tion to attosecond delays in photo ionization, J. Phys. B 45(18), 183001 (2012)
https://doi.org/10.1088/0953-4075/45/18/183001
9 J. M. Dahlström, D. Guenot, K. Klunder, M. Gisselbrecht, J. Mauritsson, A. L’ Huillier, A. Maquet, and R. Taieb, Theory of attosecond delays in laser-assisted photo ioniza-tion, Chem. Phys. 414, 53 (2013)
https://doi.org/10.1016/j.chemphys.2012.01.017
10 A. S. Kheifets, Time delay in valence-shell photo ionization of noble-gas atoms, Phys. Rev. A 87(6), 063404 (2013)
https://doi.org/10.1103/PhysRevA.87.063404
11 A. Mandal, P. C. Deshmukh, A. S. Kheifets, V. K. Dolma-tov, and S. T. Manson, Angle-resolved Wigner time delay in atomic photo ionization: The 4d subshell of free and confined Xe, Phys. Rev. A 96(5), 053407 (2017)
https://doi.org/10.1103/PhysRevA.96.053407
12 J. Watzel, A. S. Moskalenko, Y. Pavlyukh, and J. Be-rakdar, Angular resolved time delay in photoemission, J. Phys. B 48(2), 025602 (2015)
https://doi.org/10.1088/0953-4075/48/2/025602
13 D. Guénot, D. Kroon, E. Balogh, E. W. Larsen, M. Ko-tur, M. Miranda,T. Fordell, P. Johnsson, J. Mauritsson, M. Gisselbrecht, K. Varjù, C. L. Arnold, T. Carette, A. S. Kheifets, E. Lindroth, A. L’Huillier, and J. M. Dahlström, Measurements of relative photoemission time delays in no-ble gas atoms, J. Phys. B 47(24), 245602 (2014)
https://doi.org/10.1088/0953-4075/47/24/245602
14 J. Vos, L. Cattaneo, S. Patchkovskii, T. Zimmermann, C. Cirelli, M. Lucchini, A. Kheifets, A. S. Landsman, and U. Keller, Orientation-dependent stereo Wigner time de-lay and electron localization in a small molecule, Science 360(6395), 1326 (2018)
https://doi.org/10.1126/science.aao4731
15 C. Cirelli, C. Marante, S. Heuser, C. L. M. Petersson, A. J. Galan, L. Argenti, S. Zhong, D. Busto, M. Isinger, S. Nandi, S. Maclot, L. Rading, P. Johnsson, M. Gisselbrecht, M. Lucchini, L. Gallmann, J. M. Dahlström, E. Lindroth, A. L’Huillier, F. Martín, and U. Keller, Anisotropic pho-toemission time delays close to a Fano resonance, Nat. Commun. 9(1), 955 (2018)
https://doi.org/10.1038/s41467-018-03009-1
16 D. M. Villeneuve, P. Hockett, M. J. J. Vrakking, and H. Niikura, Coherent imaging of an attosecond electron wave packet, Science 356(6343), 1150 (2017)
https://doi.org/10.1126/science.aam8393
17 S. Heuser, Á. Jiménez Galán, C. Cirelli, C. Marante, M. Sabbar, R. Boge, M. Lucchini, L. Gallmann, I. Ivanov, A. S. Kheifets, J. M. Dahlström, E. Lindroth, L. Argenti, F. Martín, and U. Keller, Angular dependence of photoe-mission time delay in helium, Phys. Rev. A 94(6), 063409 (2016)
https://doi.org/10.1103/PhysRevA.94.063409
18 P. Hockett, Angle-resolved RABBITT: Theory and numer-ics, J. Phys. B 50(15), 154002 (2017)
https://doi.org/10.1088/1361-6455/aa7887
19 I. A. Ivanov and A. S. Kheifets, Angle-dependent time delay in two-color XUV+IR photoemission of he and ne, Phys. Rev. A 96(1), 013408 (2017)
https://doi.org/10.1103/PhysRevA.96.013408
20 A. W. Bray, F. Naseem, and A. S. Kheifets, Simulation of angular-resolved rabbitt measurements in noble gas atoms, Phys. Rev. A 97(6), 063404 (2018)
https://doi.org/10.1103/PhysRevA.97.063404
21 A. Harth, N. Douguet, K. Bartschat, R. Moshammer, and T. Pfeifer, Extracting phase information on continuumcontinuum couplings, Phys. Rev. A 99(2), 023410 (2019)
https://doi.org/10.1103/PhysRevA.99.023410
22 J. Fuchs, N. Douguet, S. Donsa, F. Martin, J. Burgdorfer, L. Argenti, L. Cattaneo, and U. Keller, Time delays from one-photon transitions in the continuum, Optica 7(2), 154 (2020)
https://doi.org/10.1364/OPTICA.378639
23 L. J. Zipp, A. Natan, and P. H. Bucksbaum, Probing electron delays in above-threshold ionization, Optica 1(6), 361 (2014)
https://doi.org/10.1364/OPTICA.1.000361
24 X. Gong, C. Lin, F. He, Q. Song, K. Lin, Q. Ji, W. Zhang, J. Ma, P. Lu, Y. Liu, H. Zeng, W. Yang, and J. Wu, Energy-resolved ultrashort delays of photoelectron emission clocked by orthogonal two-color laser fields, Phys. Rev. Lett.118(14), 143203 (2017)
https://doi.org/10.1103/PhysRevLett.118.143203
25 X. Song, G. Shi, G. Zhang, J. Xu, C. Lin, J. Chen, and W. Yang, Attosecond time delay of retrapped resonant ionization, Phys. Rev. Lett. 121(10), 103201 (2018)
https://doi.org/10.1103/PhysRevLett.121.103201
26 A. Kramo, E. Hasovic, D. B. Milosevic, and W. Becker, Above-threshold detachment by a two-color bicircular laser field, Laser Phys. Lett. 4(4), 279 (2007)
https://doi.org/10.1002/lapl.200610119
27 C. A. Mancuso, D. D. Hickstein, P. Grychtol, R. Knut, O. Kfir, X. M. Tong, F. Dollar, D. Zusin, M. Gopalakrishnan, C. Gentry, E. Turgut, J. L. Ellis, M. C. Chen, A. Fleischer, O. Cohen, H. C. Kapteyn, and M. M. Murnane, Strong-field ionization with two-color circularly polarized laser fields, Phys. Rev. A 91(3), 031402 (2015)
https://doi.org/10.1103/PhysRevA.91.031402
28 C. A. Mancuso, D. D. Hickstein, K. M. Dorney, J. L. Ellis, E. Hasovic, R. Knut, P. Grychtol, C. Gentry, M. Gopalakrishnan, D. Zusin, F. J. Dollar, X. M. Tong, D. B. Milošević, W. Becker, H. C. Kapteyn, and M. M. Murnane, Controlling electron–ion rescattering in two-color circularly polarized femtosecond laser fields, Phys. Rev. A 3(5), 053406 (2016)
https://doi.org/10.1103/PhysRevA.93.053406
29 M. Ilchen, N. Douguet, T. Mazza, A. J. Rafipoor, C. Callegari, P. Finetti, O. Plekan, K. C. Prince, A. Demidovich, C. Grazioli, L. Avaldi, P. Bolognesi, M. Coreno, M. Di Fraia, M. Devetta, Y. Ovcharenko, S. Düsterer, K. Ueda, K. Bartschat, A. N. Grum-Grzhimailo, A. V. Bozhevolnov, A. K. Kazansky, N. M. Kabachnik, and M. Meyer, Circular dichroism in multiphoton ionization of resonantly excited He+ ons, Phys. Rev. Lett. 118(1), 013002 (2017)
https://doi.org/10.1103/PhysRevLett.118.013002
30 M. Busuladžić, A. Gazibegović-Busuladžić, and D. B. Milošević, Strong-field ionization of homonuclear diatomic molecules by a bicircular laser field: Rotational and reflection symmetries, Phys. Rev. A 5(3), 033411 (2017)
https://doi.org/10.1103/PhysRevA.95.033411
31 S. Eckart, K. Fehre, N. Eicke, A. Hartung, J. Rist, D. Trabert, N. Strenger, A. Pier, L. Ph. H. Schmidt, T. Jahnke, M. S. Schoffler, M. Lein, M. Kunitski, and R. Dorner, Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization, Phys. Rev. Lett. 121(16), 163202 (2018)
https://doi.org/10.1103/PhysRevLett.121.163202
32 M. Han, P. Ge, Y. Shao, Q. Gong, and Y. Liu, Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets, Phys. Rev. Lett. 120(7), 073202 (2018)
https://doi.org/10.1103/PhysRevLett.120.073202
33 M. Li, W. C. Jiang, H. Xie, S. Luo, Y. Zhou, and P. Lu, Strong-field photoelectron holography of atoms by bicircular two-color laser pulses, Phys. Rev. A 97(2), 023415 (2018)
https://doi.org/10.1103/PhysRevA.97.023415
34 P. Ge, M. Han, Y. Deng, Q. Gong, and Y. Liu, Universal description of the attoclock with two-color corotating circular fields, Phys. Rev. Lett. 122(1), 013201 (2019)
https://doi.org/10.1103/PhysRevLett.122.013201
35 Q. Ke, Y. Zhou, J. Tan, M. He, J. Liang, Y. Zhao, M. Li, and P. Lu, Two-dimensional photoelectron holography in strong-field tunneling ionization by counter rotating twocolor circularly polarized laser pulses, Opt. Express 27(22), 32193 (2019)
https://doi.org/10.1364/OE.27.032193
36 T. N. Rescigno and C. W. McCurdy, Numerical grid methods for quantum–mechanical scattering problems, Phys. Rev. A 62(3), 032706 (2000)
https://doi.org/10.1103/PhysRevA.62.032706
37 W. C. Jiang and X. Q. Tian, Efficient split-lanczos propagator for strong-field ionization of atoms, Opt. Express 25(22), 26832 (2017)
https://doi.org/10.1364/OE.25.026832
38 J. Liang, W. C. Jiang, S. Wang, M. Li, Y. Zhou, and P. Lu, Atomic dynamic interference in intense linearly and circularly polarized XUV pulses, J. Phys. B 53(9), 095601 (2020)
https://doi.org/10.1088/1361-6455/ab7527
39 S. Eckart, D. Trabert, K. Fehre, A. Geyer, J. Rist, K. Lin, F. Trinter, L. Ph. H. Schmidt, M. S. Schoffler, T. Jahnke, M. Kunitski, and R. Dorner, Sideband modulation by subcycle interference, Phys. Rev. A 102(4), 043115 (2020)
https://doi.org/10.1103/PhysRevA.102.043115
40 M. Wickenhauser, X. M. Tong, and C. D. Lin, Laser induced substructures in above-threshold-ionization spectra from intense few-cycle laser pulses, Phys. Rev. A 73, 011401(R) (2006)
https://doi.org/10.1103/PhysRevA.73.011401
41 A. Tóth and A. Csehi, Probing strong-field two-photon transitions through dynamic interference, J. Phys. At. Mol. Opt. Phys. 54(3), 035005 (2021)
https://doi.org/10.1088/1361-6455/abdb8e
42 Y. Feng, M. Li, S. Luo, K. Liu, B. Du, Y. Zhou, and P. Lu, Semiclassical analysis of photoelectron interference in a synthesized two-color laser pulse, Phys. Rev. A 100(6), 063411 (2019)
https://doi.org/10.1103/PhysRevA.100.063411
43 A. Jiménez-Galán, F. Martin, and L. Argenti, Two photon finite-pulse model for resonant transitions in attosecond experiments, Phys. Rev. A 93(2), 023429 (2016)
https://doi.org/10.1103/PhysRevA.93.023429
44 U. Fano, Propensity rules: An analytical approach, Phys. Rev. A 32(1), 617 (1985)
https://doi.org/10.1103/PhysRevA.32.617
45 D. Busto, J. Vinbladh, S. Zhong, M. Isinger, S. Nandi, S. Maclot, P. Johnsson, M. Gisselbrecht, A. L’Huillier, E. Lindroth, and J. M. Dahlström, Fano’s propensity rule in angle-resolved attosecond pump-probe photo ionization, Phys. Rev. Lett. 123(13), 133201 (2019)
https://doi.org/10.1103/PhysRevLett.123.133201
46 A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton, NJ: Princeton University Press, 1974
47 https://ww2.mathworks.cn/help/gads/ga.html
48 M. Bertolino and J. M. Dahlström, Multiphoton interaction phase shifts in attosecond science, Phys. Rev. Res. 3(1), 013270 (2021)
https://doi.org/10.1103/PhysRevResearch.3.013270
49 D. Bharti, D. Atri-Schuller, G. Menning, K. R. Hamilton, R. Moshammer, T. Pfeifer, N. Douguet, K. Bartschat, and A. Harth, Decomposition of the transition phase in multisideband schemes for reconstruction of attosecond beating by interference of two-photon transitions, Phys. Rev. A 103(2), 022834 (2021)
https://doi.org/10.1103/PhysRevA.103.022834
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed