Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (2) : 22501    https://doi.org/10.1007/s11467-021-1104-7
RESEARCH ARTICLE
Unselective ground-state blockade of Rydberg atoms for implementing quantum gates
Jin-Lei Wu1, Yan Wang1, Jin-Xuan Han1, Shi-Lei Su2, Yan Xia3, Yongyuan Jiang1, Jie Song1()
1. School of Physics, Harbin Institute of Technology, Harbin 150001, China
2. School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
3. Department of Physics, Fuzhou University, Fuzhou 350002, China
 Download: PDF(1733 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to implement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.

Keywords Rydberg atoms      unselective ground-state blockade      SWAP gate      Fredkin gate     
Corresponding Author(s): Jie Song   
Issue Date: 24 August 2021
 Cite this article:   
Jin-Lei Wu,Yan Wang,Jin-Xuan Han, et al. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates[J]. Front. Phys. , 2022, 17(2): 22501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1104-7
https://academic.hep.com.cn/fop/EN/Y2022/V17/I2/22501
1 D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
https://doi.org/10.1103/PhysRevLett.85.2208
2 T. F. Gallagher, Rydberg Atoms, Cambridge University Press, 2005
https://doi.org/10.1007/978-0-387-26308-3_14
3 M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
https://doi.org/10.1103/RevModPhys.82.2313
4 M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
https://doi.org/10.1103/PhysRevLett.87.037901
5 E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two-atoms, Nat. Phys. 5(2), 110 (2009)
https://doi.org/10.1038/nphys1178
6 A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
https://doi.org/10.1038/nphys1183
7 D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100(17), 170504 (2008)
https://doi.org/10.1103/PhysRevLett.100.170504
8 H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)
https://doi.org/10.1103/PhysRevA.82.034307
9 H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phys. Rev. A96(2), 022321 (2017)
https://doi.org/10.1103/PhysRevA.96.022321
10 P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A96(5), 052316 (2017)
https://doi.org/10.1103/PhysRevA.96.052316
11 Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A97(4), 042336 (2018)
https://doi.org/10.1103/PhysRevA.97.042336
12 D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A96(4), 042306 (2017)
https://doi.org/10.1103/PhysRevA.96.042306
13 I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of bell states, Phys. Rev. A 97(3), 032701 (2018)
https://doi.org/10.1103/PhysRevA.97.032701
14 X. F. Shi, Deutsch, Toffoli, and CNOT gates via Rydberg blockade of neutral atoms, Phys. Rev. Appl. 9(5), 051001 (2018)
https://doi.org/10.1103/PhysRevApplied.9.051001
15 C. P. Shen, J. L. Wu, S. L. Su, and E. Liang, Construction of robust Rydberg controlled-phase gates, Opt. Lett. 44(8), 2036 (2019)
https://doi.org/10.1364/OL.44.002036
16 K. Y. Liao, X. H. Liu, Z. Li, and Y. X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44(19), 4801 (2019)
https://doi.org/10.1364/OL.44.004801
17 B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)
https://doi.org/10.1103/PhysRevResearch.2.043130
18 M. Khazali and K. Mølmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10(2), 021054 (2020)
https://doi.org/10.1103/PhysRevX.10.021054
19 M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses, Phys. Rev. A 101(6), 062309 (2020)
https://doi.org/10.1103/PhysRevA.101.062309
20 A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer–Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)
https://doi.org/10.1103/PhysRevA.101.030301
21 C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A102(4), 042607 (2020)
https://doi.org/10.1103/PhysRevA.102.042607
22 X. F. Shi, Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14(5), 054058 (2020)
https://doi.org/10.1103/PhysRevApplied.14.054058
23 X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
https://doi.org/10.1007/s11467-021-1069-6
24 C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)
https://doi.org/10.1103/PhysRevLett.98.023002
25 T. Pohl and P. R. Berman, Breaking the dipole blockade: Nearly resonant dipole interactions in few-atom systems, Phys. Rev. Lett. 102(1), 013004 (2009)
https://doi.org/10.1103/PhysRevLett.102.013004
26 J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Wang, Breakdown of the dipole blockade with a zero area phase-jump pulse, Phys. Rev. A 80(5), 053413 (2009)
https://doi.org/10.1103/PhysRevA.80.053413
27 T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)
https://doi.org/10.1103/PhysRevLett.104.013001
28 W. Li, C. Ates, and I. Lesanovsky, Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps, Phys. Rev. Lett. 110(21), 213005 (2013)
https://doi.org/10.1103/PhysRevLett.110.213005
29 S. L. Su, F. Q. Guo, J. L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131(5), 53001 (2020)
https://doi.org/10.1209/0295-5075/131/53001
30 S. L. Su, E. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
https://doi.org/10.1103/PhysRevA.93.012306
31 S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
https://doi.org/10.1103/PhysRevA.95.022319
32 S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
https://doi.org/10.1103/PhysRevA.96.042335
33 S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled phase gate, Phys. Rev. A 98(3), 032306 (2018)
https://doi.org/10.1103/PhysRevA.98.032306
34 J. L. Wu, J. Song, and S. L. Su, Resonant-interaction induced Rydberg antiblockade and its applications, Phys. Lett. A 384(1), 126039 (2020)
https://doi.org/10.1016/j.physleta.2019.126039
35 T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)
https://doi.org/10.1103/PhysRevA.101.012306
36 F. Q. Guo, J. L. Wu, X. Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L. L. Yan, M. Feng, and S. L. Su, Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102(6), 062410 (2020)
https://doi.org/10.1103/PhysRevA.102.062410
37 D. D. B. Rao, and K. Mølmer, Dark entangled steady states of interacting Rydberg atoms, Phys. Rev. Lett. 111(3), 033606 (2013)
https://doi.org/10.1103/PhysRevLett.111.033606
38 A. W. Carr, and M. Saffman, Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping, Phys. Rev. Lett. 111(3), 033607 (2013)
https://doi.org/10.1103/PhysRevLett.111.033607
39 X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
40 S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
https://doi.org/10.1103/PhysRevA.92.022328
41 J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments, Phys. Rev. A 96(3), 032336 (2017)
https://doi.org/10.1103/PhysRevA.96.032336
42 X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
https://doi.org/10.1103/PhysRevA.96.012328
43 X. Y. Zhu, Z. Jin, E. Liang, S. Zhang, and S. L. Su, Preparation of steady 3D dark state entanglement in dissipative Rydberg atoms via electromagnetic induced transparency, Ann. Phys. (Berlin) 532(6), 2000059 (2020)
https://doi.org/10.1002/andp.202000059
44 T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104(1), 010502 (2010)
https://doi.org/10.1103/PhysRevLett.104.010502
45 L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104(1), 010503 (2010)
https://doi.org/10.1103/PhysRevLett.104.010503
46 X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82(3), 030306 (2010)
https://doi.org/10.1103/PhysRevA.82.030306
47 H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg-atom qubits, Phys. Rev. Lett. 121(12), 123603 (2018)
https://doi.org/10.1103/PhysRevLett.121.123603
48 H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123(17), 170503 (2019)
https://doi.org/10.1103/PhysRevLett.123.170503
49 I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16(8), 857 (2020)
https://doi.org/10.1038/s41567-020-0903-z
50 H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124(3), 033603 (2020)
https://doi.org/10.1103/PhysRevLett.124.033603
51 J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and T. Pfau, Rydberg dressing: Understanding of collective many-body effects and implications for experiments, New J. Phys. 16(6), 063012 (2014)
https://doi.org/10.1088/1367-2630/16/6/063012
52 Y. Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydbergdressed spin-flip blockade, Nat. Phys. 12(1), 71 (2016)
https://doi.org/10.1038/nphys3487
53 D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)
https://doi.org/10.1103/PhysRevA.98.062338
54 X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
https://doi.org/10.1103/PhysRevA.96.012328
55 Y. J. Zhao, B. Liu, Y. Q. Ji, S. Q. Tang, and X. Q. Shao, Robust generation of entangled state via ground state antiblockade of Rydberg atoms, Sci. Rep. 7(1), 16489 (2017)
https://doi.org/10.1038/s41598-017-16533-9
56 Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Accelerated and noise-resistant generation of highfidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)
https://doi.org/10.1103/PhysRevA.97.032328
57 D. X. Li, T. Y. Zheng, and X. Q. Shao, Adiabatic preparation of multipartite GHZ states via Rydberg ground-state blockade, Opt. Express 27(15), 20874 (2019)
https://doi.org/10.1364/OE.27.020874
58 X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)
https://doi.org/10.1103/PhysRevA.102.053118
59 H. Z. Wu, Z. B. Yang, and S. B. Zheng, Quantum state swap for two trapped Rydberg atoms, Chin. Phys. B21(4), 040305 (2012)
https://doi.org/10.1088/1674-1056/21/4/040305
60 X. F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90(6), 062327 (2014)
https://doi.org/10.1103/PhysRevA.90.062327
61 A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller, Designing frustrated quantum magnets with laser-dressed Rydberg atoms, Phys. Rev. Lett. 114(17), 173002 (2015)
https://doi.org/10.1103/PhysRevLett.114.173002
62 J. L. Wu, Y. Wang, J. X. Han, Y. K. Feng, S. L. Su, Y. Xia, Y. Jiang, and J. Song, One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness, Photon. Res. 9(5), 814 (2021)
https://doi.org/10.1364/PRJ.415795
63 E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
https://doi.org/10.1088/1367-2630/14/10/103035
64 G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
https://doi.org/10.1103/PhysRevLett.109.170501
65 G. Feng, G. Xu, and G. Long, Experimental realization of nonadiabatic holonomic quantum computation, Phys. Rev. Lett. 110(19), 190501 (2013)
https://doi.org/10.1103/PhysRevLett.110.190501
66 H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many body dynamics on a 51-atom quantum simulator, Nature551(7682), 579 (2017)
https://doi.org/10.1038/nature24622
67 A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science365(6453), 570 (2019)
https://doi.org/10.1126/science.aax9743
68 D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
69 B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
https://doi.org/10.1103/PhysRevLett.123.100501
70 P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)
https://doi.org/10.1103/PhysRevA.101.062306
71 E. Brion, L. H. Pedersen, and K. Mølmer, Implementing a neutral atom Rydberg gate without populating the Rydberg state, J. Phys. B40(9), S159 (2007)
https://doi.org/10.1088/0953-4075/40/9/S09
72 J. L. Wu, S. L. Su, Y. Wang, J. Song, Y. Xia, and Y. Jiang, Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitudemodulation field, Opt. Lett. 45(5), 1200 (2020)
https://doi.org/10.1364/OL.386765
73 H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, One step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express28(24), 35576 (2020)
https://doi.org/10.1364/OE.410158
74 H. D. Yin and X. Q. Shao, Gaussian soft control-based quantum fan-out gate in ground-state manifolds of neutral atoms, Opt. Lett. 46(10), 2541 (2021)
https://doi.org/10.1364/OL.424469
75 I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Quasiclassical calculations of black body radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n≤80, Phys. Rev. A79(5), 052504 (2009)
https://doi.org/10.1103/PhysRevA.80.059902
76 M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J. Phys. B49(20), 202001 (2016)
https://doi.org/10.1088/0953-4075/49/20/202001
77 I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina, Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions, Phys. Rev. A84(5), 053409 (2011)
https://doi.org/10.1103/PhysRevA.84.053409
78 X. F. Shi, Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11(4), 044035 (2019)
https://doi.org/10.1103/PhysRevApplied.11.044035
79 X. F. Shi, Suppressing motional dephasing of ground-Rydberg transition for high-fidelity quantum control with neutral atoms, Phys. Rev. Appl. 13(2), 024008 (2020)
https://doi.org/10.1103/PhysRevApplied.13.024008
80 J. L. Wu, Y. Wang, J. X. Han, S. L. Su, Y. Xia, Y. Jiang, and J. Song, Resilient quantum gates on periodically driven Rydberg atoms, Phys. Rev. A103(1), 012601 (2021)
https://doi.org/10.1103/PhysRevA.103.012601
81 S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, and T. Lahaye, Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states, Phys. Rev. A97(5), 053803 (2018)
https://doi.org/10.1103/PhysRevA.97.053803
82 T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg-mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123(23), 230501 (2019)
https://doi.org/10.1103/PhysRevLett.123.230501
83 D. S. Weiss and M. Saffman, Quantum computing with neutral atoms, Phys. Today70(7), 44 (2017)
https://doi.org/10.1063/PT.3.3626
84 A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16(2), 132 (2020)
https://doi.org/10.1038/s41567-019-0733-z
85 L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G. O. Reymond, and C. Jurczak, Quantum computing with neutral atoms, Quantum4, 327 (2020)
https://doi.org/10.22331/q-2020-09-21-327
86 S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)
https://doi.org/10.1103/PhysRevA.101.012347
87 E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21(3–4), 219 (1982)
https://doi.org/10.1007/BF01857727
88 I. L. Chuang and Y. Yamamoto, Quantum bit regeneration, Phys. Rev. Lett. 76(22), 4281 (1996)
https://doi.org/10.1103/PhysRevLett.76.4281
89 H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum fingerprinting, Phys. Rev. Lett. 87(16), 167902 (2001)
https://doi.org/10.1103/PhysRevLett.87.167902
90 B. K. Behera, T. Reza, A. Gupta, and P. K. Panigrahi, Designing quantum router in IBM quantum computer, Quantum Inform. Process. 18(11), 328 (2019)
https://doi.org/10.1007/s11128-019-2436-x
91 W. Feng and D. Wang, Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits, Phys. Rev. A 101(6), 062312 (2020)
https://doi.org/10.1103/PhysRevA.101.062312
92 M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of threequbit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)
https://doi.org/10.1038/nature10786
93 A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling, Phil. Trans. R. Soc. A370(1976), 4748 (2012)
https://doi.org/10.1098/rsta.2011.0355
94 G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)
https://doi.org/10.1103/PhysRevLett.118.133202
95 B. J. Liu, Y. S. Wang, and M. H. Yung, Global property condition-based non-adiabatic geometric quantum control, arXiv: 2008.02176 (2020)
96 A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Optimal superadiabatic population transfer and gates by dynamical phase corrections, Quantum Sci. Technol. 3(2), 024006 (2018)
https://doi.org/10.1088/2058-9565/aaa640
97 A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)
https://doi.org/10.1126/sciadv.aau5999
98 C. Wang, J. X. Han, J. L. Wu, Y. Wang, Y. Jiang, Y. Xia, and J. Song, Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance, Laser Phys. 30(4), 045201 (2020)
https://doi.org/10.1088/1555-6611/ab7665
99 J. X. Han, J. L. Wu, Y. Wang, Y. Y. Jiang, Y. Xia, and J. Song, Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28(2), 1954 (2020)
https://doi.org/10.1364/OE.384352
[1] Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed