Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (2) : 22505    https://doi.org/10.1007/s11467-021-1117-2
RESEARCH ARTICLE
Wide and fast-frequency tuning for a stabilized diode laser
Yunfei Wang1, Yuqing Li1,2(), Jizhou Wu1,2, Wenliang Liu1,2, Peng Li3, Yongming Fu3, Jie Ma1,2(), Liantuan Xiao1,2, Suotang Jia1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
 Download: PDF(1244 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

External-cavity diode laser (ECDL) has important applications in many fundamental and applied researches. Here we report a method to fast and widely tune the frequency of a stabilized ECDL. The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltage-controlled oscillator contained in a phase detector, whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL. The output frequency of the stabilized ECDL can be shifted at a short characteristic time of ~ 150 μs within a range of ~ 620 MHz. The wide and fast-frequency tuning achieved by our method is compared with other previous works. We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6 μK.

Keywords external-cavity diode laser      frequency stabilization      laser cooling      interaction of laser with atoms     
Corresponding Author(s): Yuqing Li,Jie Ma   
Issue Date: 28 October 2021
 Cite this article:   
Yunfei Wang,Yuqing Li,Jizhou Wu, et al. Wide and fast-frequency tuning for a stabilized diode laser[J]. Front. Phys. , 2022, 17(2): 22505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1117-2
https://academic.hep.com.cn/fop/EN/Y2022/V17/I2/22505
1 I. Bloch, Quantum coherence and entanglement with ultracold atoms in optical lattices, Nature453(7198), 1016 (2008)
https://doi.org/10.1038/nature07126
2 W. L. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, All-optical switch and transistor gated by one stored photon, Science341(6147), 768 (2013)
https://doi.org/10.1126/science.1238169
3 H. N. Dai, B. Yang, A. Reingruber, X. F. Xu, X. Jiang, Y. A. Chen, Z. S. Yuan, and J. W. Pan, Generation and detection of atomic spin entanglement in optical lattices, Nat. Phys.12(8), 783 (2016)
https://doi.org/10.1038/nphys3705
4 X. Y. Luo, Y. Q. Zou, L. N. Wu, Q. Liu, M. F. Han, M. K. Tey, and L. You, Deterministic entanglement generation from driving through quantum phase transitions, Science355(6325), 620 (2017)
https://doi.org/10.1126/science.aag1106
5 K. B. MacAdam, A. Steinbach, and C. Wieman, A narrowband tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb, Am. J. Phys.60(12), 1098 (1992)
https://doi.org/10.1119/1.16955
6 J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. Jia, Absolute frequency stabilization of a diode laser to cesium atom–molecular hyperfine transitions via modulating molecules, Appl. Phys. Lett.91(16), 161101 (2007)
https://doi.org/10.1063/1.2799250
7 E. D. Black, An introduction to Pound–Drever–Hall laser frequency stabilization, Am. J. Phys.69, 69 (2000)
https://doi.org/10.1119/1.1286663
8 J. I. Thorpe, K. Numata, and J. Livas, Laser frequency stabilization and control through offset sideband locking to optical cavities, Opt. Express16(20), 15980 (2008)
https://doi.org/10.1364/OE.16.015980
9 B. L. Fan, W. Xiong, S. G. Wang, and L. J. Wang, A stabilized laser continuously tunable over a range of 1.5 GHz, Rev. Sci. Instrum.87(11), 113101 (2016)
https://doi.org/10.1063/1.4964471
10 D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard, Opt. Lett.28(10), 813 (2003)
https://doi.org/10.1364/OL.28.000813
11 H. Y. Ryu, S. H. Lee, and H. S. Suh, Widely tunable external cavity laser diode injection locked to an optical frequency comb, IE EE Photonics Technol. Lett.22(14), 1066 (2010)
https://doi.org/10.1109/LPT.2010.2049101
12 G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz, Opt. Commun.104(4–6), 339 (1994)
https://doi.org/10.1016/0030-4018(94)90567-3
13 L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, A compact grating-stabilized diode laser system for atomic physics, Opt. Commun.117(5–6), 541 (1995)
https://doi.org/10.1016/0030-4018(95)00146-Y
14 G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, Laser frequency offset locking using a side of filter technique, Appl. Phys. B79(3), 363 (2004)
https://doi.org/10.1007/s00340-004-1559-6
15 D. L. Jenkin, D. J. Mc Carron, M. P. Köppinger, H. W. Cho, S. A. Hopkins, and S. L. Cornish, Bose–Einstein condensation of 87Rb in a levitated crossed dipole trap, Eur. Phys. J. D65(1–2), 11 (2011)
https://doi.org/10.1140/epjd/e2011-10720-5
16 E. A. Donley, T. P. Heavner, F. Levi,, M. O. Tataw, and S. R. Jefferts, Double-pass acousto–optic modulator system, Rev. Sci. Instrum.76(6), 063112 (2005)
https://doi.org/10.1063/1.1930095
17 D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, Broadband optical serrodyne frequency shifting, Opt. Lett.35(5), 745 (2010)
https://doi.org/10.1364/OL.35.000745
18 R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, Robust laser frequency stabilization by serrodyne modulation, Opt. Lett.37(6), 1005 (2012)
https://doi.org/10.1364/OL.37.001005
19 C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, Polarization spectroscopy of a closed atomic transition: Applications to laser frequency locking, J. Phys. At. Mol. Opt. Phys.35(24), 5141 (2002)
https://doi.org/10.1088/0953-4075/35/24/315
20 S. Grego, M. Colla, A. Fioretti, J. H. Müller, P. Verkerk, and E. Arimondo, Acesium magneto–optical trap for cold collisions studies, Opt. Commun.132(5–6), 519 (1996)
https://doi.org/10.1016/0030-4018(96)00417-8
21 Y. Q. Li, G. S. Feng, R. D. Xu, X. F. Wang, J. Z. Wu, G. Chen, X. C. Dai, J. Ma, L. T. Xiao, and S. T. Jia, Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap, Phys. Rev. A91(5), 053604 (2015)
https://doi.org/10.1103/PhysRevA.91.053604
[1] Kang Yan, RuoXi Gu, Di Wu, Jin Wei, Yong Xia, Jianping Yin. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals[J]. Front. Phys. , 2022, 17(4): 42502-.
[2] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[3] Jin-Jin Du (杜金锦), Wen-Fang Li (李文芳), Peng-Fei Zhang (张鹏飞), Gang Li (李刚), Jun-Min Wang (王军民), Tian-Cai Zhang (张天才). Experimental progress in the measurement and control of single atom trajectory[J]. Front. Phys. , 2012, 7(4): 435-443.
[4] Jia-qi Zhong (仲嘉琪), Geng-hua Yu (余庚华), Jin Wang (王谨), Ming-sheng Zhan (詹明生). Determination of the 5d6p 3F4–5d2 3F transition probabilities of Ba I[J]. Front. Phys. , 2012, 7(2): 235-238.
[5] Xin-ye XU (徐信业), Wen-li WANG (王文丽), Qing-hong ZHOU (周庆红), Guo-hui LI (李国辉), Hai-ling JIANG (蒋海灵), Lin-fang CHEN (陈林芳), Jie YE (叶捷), Zhi-hong ZHOU (周志红), Yin CAI (蔡寅), Hai-yao TANG (唐海瑶), Min ZHOU (周敏). Laser cooling and trapping of ytterbium atoms[J]. Front. Phys. , 2009, 4(2): 160-164.
[6] Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林). Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion[J]. Front. Phys. , 2009, 4(2): 144-154.
[7] KIELPINSKI Dave. Ion-trap quantum information processing: experimental status[J]. Front. Phys. , 2008, 3(4): 365-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed