Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 12302    https://doi.org/10.1007/s11467-021-1123-4
VIEW & PERSPECTIVE
Geometric phase opens new frontiers in nonlinear frequency conversion of light
Mai Tal1,2,3, Danielle Ben Haim1,3, Tal Ellenbogen1,3()
1. Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel
2. Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6779801, Israel
3. Center for Light-Matter Interaction, Tel-Aviv University, TelAviv 6779801, Israel
 Download: PDF(1762 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Tal Ellenbogen   
Issue Date: 19 November 2021
 Cite this article:   
Mai Tal,Danielle Ben Haim,Tal Ellenbogen. Geometric phase opens new frontiers in nonlinear frequency conversion of light[J]. Front. Phys. , 2022, 17(1): 12302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1123-4
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/12302
1 P. A. Franken , A. E. Hill , C. W. Peters , and G. Weinreich , Generation of optical harmonics, Phys. Rev. Lett. 7 (4), 118 (1961)
https://doi.org/10.3847/1538-4365/ab6bcb
2 R. W. Boyd , Nonlinear Optics, Elsevier, 2003
3 J. A. Armstrong , N. Bloembergen , J. Ducuing , and P. S. Pershan , Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127 (6), 1918 (1962)
https://doi.org/10.1103/PhysRev.127.1918
4 E. Garmire , Nonlinear optics in daily life, Opt. Express 21 (25), 30532 (2013)
https://doi.org/10.1364/OE.21.030532
5 A. Shapira , L. Naor , and A. Arie , Nonlinear optical holograms for spatial and spectral shaping of light waves, Sci. Bull. (Beijing) 60 (16), 1403 (2015)
https://doi.org/10.1007/s11434-015-0855-3
6 S. Keren-Zur , L. Michaeli , H. Suchowski , and T. Ellenbogen , Shaping light with nonlinear metasurfaces, Adv. Opt. Photonics 10 (1), 309 (2018)
https://doi.org/10.1364/AOP.10.000309
7 Z. Sun , Y. Yi , T. Song , G. Clark , B. Huang , Y. Shan , S. Wu , D. Huang , C. Gao , Z. Chen , M. McGuire , T. Cao , D. Xiao , W. T. Liu , W. Yao , X. Xu , and S. Wu , Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3, Nature 572 (7770), 497 (2019)
https://doi.org/10.1038/s41586-019-1445-3
8 J. Wang , F. Sciarrino , A. Laing , and M. G. Thompson , Integrated photonic quantum technologies, Nat. Photonics 14, 273 (2020)
https://doi.org/10.1038/s41566-019-0532-1
9 J. Su , L. Cui , J. Li , Y. Liu , X. Li , and Z. Y. Ou , Versatile and precise quantum state engineering by using nonlinear interferometers, Opt. Express 27 (15), 20479 (2019)
https://doi.org/10.1364/OE.27.020479
10 A. Karnieli , Y. Y. Li , and A. Arie , The geometric phase in nonlinear frequency conversion, Front. Phys. 17 (1), 12301 (2021)
https://doi.org/10.1007/s11467-021-1102-9
11 P. Mandel , P. Galatola , L. A. Lugiato , and W. Kaige , Berry phase analogies in nonlinear optics, Opt. Commun. 80 (3–4), 262 (1991)
https://doi.org/10.1016/0030-4018(91)90263-D
12 M. S. Alber , G. G. Luther , J. E. Marsden , and J. M. Robbins , Geometric phases, reduction and Lie–Poisson structure for the resonant three-wave interaction, Physica D 123 (1–4), 271 (1998)
https://doi.org/10.1016/S0167-2789(98)00127-4
13 M. V. Berry , Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392 (1802), 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
14 E. Cohen , H. Larocque , F. Bouchard , F. Nejadsattari , Y. Gefen , and E. Karimi , Geometric phase from AharonovBohm to Pancharatnam–Berry and beyond, Nat. Rev. Phys. 1 (7), 437 (2019)
https://doi.org/10.1038/s42254-019-0071-1
15 Y. Aharonov and J. Anandan , Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
16 J. Samuel and R. Bhandari , General setting for Berry’s phase, Phys. Rev. Lett. 60 (23), 2339 (1988)
https://doi.org/10.1103/PhysRevLett.60.2339
17 A. Shapere and F. Wilczek , Geometric Phases in Physics, World Scientific, 2339 1989
18 S. Pancharatnam , Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. Sect. A 44 (5), 247 (1956)
https://doi.org/10.1007/BF03046050
19 S. Ramaseshan and R. Nityananda , The interference of polarized light as an early example of Berry’s phase, Curr. Sci. 55, 1225 (1986)
20 M. V. Berry , The adiabatic phase and Pancharatnam’s phase for polarized light, J. Mod. Opt. 34 (11), 1401 (1987)
https://doi.org/10.1080/09500348714551321
21 N. Meinzer , W. L. Barnes , and I. R. Hooper , Plasmonic meta-atoms and metasurfaces, Nat. Photonics 8 (12), 889 (2014)
https://doi.org/10.1038/nphoton.2014.247
22 H. Suchowski , D. Oron , A. Arie , and Y. Silberberg , Geometrical representation of sum frequency generation and adiabatic frequency conversion, Phys. Rev. A 78 (6), 063821 (2008)
https://doi.org/10.1103/PhysRevA.78.063821
23 A. Karnieli and A. Arie , Fully controllable adiabatic geometric phase in nonlinear optics, Opt. Express 26 (4), 4920 (2018)
https://doi.org/10.1364/OE.26.004920
24 H. Suchowski , G. Porat , and A. Arie , Adiabatic processes in frequency conversion, Laser Photonics Rev. 8 (3), 333 (2014)
https://doi.org/10.1002/lpor.201300107
25 A. Karnieli , S. Trajtenberg-Mills , G. Di Domenico , and A. Arie , Experimental observation of the geometric phase in nonlinear frequency conversion, Optica 6 (11), 1401 (2019)
https://doi.org/10.1364/OPTICA.6.001401
26 G. Li , S. Zhang , and T. Zentgraf , Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2 (5), 17010 (2017)
https://doi.org/10.1038/natrevmats.2017.10
27 L. Michaeli , S. Keren-Zur , O. Avayu , H. Suchowski , and T. Ellenbogen , Nonlinear surface lattice resonance in plasmonic nanoparticle arrays, Phys. Rev. Lett. 118 (24), 243904 (2017)
https://doi.org/10.1103/PhysRevLett.118.243904
28 R. Czaplicki , A. Kiviniemi , M. J. Huttunen , X. Zang , T. Stolt , I. Vartiainen , J. Butet , M. Kuittinen , O. J. F. Martin , and M. Kauranen , Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density, Nano Lett. 18 (12), 7709 (2018)
https://doi.org/10.1021/acs.nanolett.8b03378
29 G. Li , S. Chen , N. Pholchai , B. Reineke , P. W. H. Wong , E. Y. B. Pun , K. W. Cheah , T. Zentgraf , and S. Zhang , Continuous control of the nonlinearity phase for harmonic generations, Nat. Mater. 14 (6), 607 (2015)
https://doi.org/10.1038/nmat4267
30 M. Tymchenko , J. S. Gomez-Diaz , J. Lee , N. Nookala , M. A. Belkin , and A. Alù , Gradient nonlinear pancharatnamberry metasurfaces, Phys. Rev. Lett. 115 (20), 207403 (2015)
https://doi.org/10.1103/PhysRevLett.115.207403
31 O. Wolf , S. Campione , A. Benz , A. P. Ravikumar , S. Liu , T. S. Luk , E. A. Kadlec , E. A. Shaner , J. F. Klem , M. B. Sinclair , and I. Brener , Phased-array sources based on nonlinear metamaterial nanocavities, Nat. Commun. 6 (1), 7667 (2015)
https://doi.org/10.1038/ncomms8667
32 W. K. Burns and N. Bloembergen , Third-harmonic generation in absorbing media of cubic or isotropic symmetry, Phys. Rev. B 4 (10), 3437 (1971)
https://doi.org/10.1103/PhysRevB.4.3437
33 S. Chen , G. Li , F. Zeuner , W. H. Wong , E. Y. B. Pun , T. Zentgraf , K. W. Cheah , and S. Zhang , Symmetry-selective third-harmonic generation from plasmonic metacrystals, Phys. Rev. Lett. 113 (3), 033901 (2014)
https://doi.org/10.1103/PhysRevLett.113.033901
34 C. McDonnell , J. Deng , S. Sideris , T. Ellenbogen , and G. Li , Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces, Nat. Commun. 12 (1), 30 (2021)
https://doi.org/10.1038/s41467-020-20283-0
35 Y. Zhang , Y. Sheng , S. Zhu , M. Xiao , and W. Krolikowski , Nonlinear photonic crystals: From 2D to 3D, Optica 8 (3), 372 (2021)
https://doi.org/10.1364/OPTICA.416619
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed