Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (4) : 43502    https://doi.org/10.1007/s11467-021-1140-3
RESEARCH ARTICLE
Near-field infrared response of graphene on copper substrate
Zhen-Bing Dai1,3, Gui Cen1, Zhibin Zhang2, Xinyu Lv1, Kaihui Liu2, Zhiqiang Li1()
1. College of Physics, Sichuan University, Chengdu 610065, China
2. School of Physics, Peking University, Beijing 100871, China
3. Department of Physics, Sichuan Normal University, Chengdu 610066, China
 Download: PDF(701 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The electronic properties of graphene are very sensitive to its dielectric environment. The coupling to a metal substrate can give rise to many novel quantum effects in graphene, such as band renormalization and plasmons with unusual properties, which are of high technological interest. Infrared nanoimaging are very suitable for exploring these effects considering their energy and length scales. Here, we report near-field infrared nanoimaging studies of graphene on copper synthesized by chemical vapor deposition. Remarkably, our measurements reveal three different types of near-field optical responses of graphene, which are very distinct from the near-field edge fringes observed in the substrate. These results can be understood from the modification of optical conductivity of graphene due to its coupling with the substrate. Our work provides a framework for identifying the near-field response of graphene in graphene/metal systems and paves the way for studying their novel physics and potential applications.

Keywords near-field infrared response      graphene      copper      graphene/metal     
Corresponding Author(s): Zhiqiang Li   
Issue Date: 18 February 2022
 Cite this article:   
Zhen-Bing Dai,Gui Cen,Zhibin Zhang, et al. Near-field infrared response of graphene on copper substrate[J]. Front. Phys. , 2022, 17(4): 43502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1140-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I4/43502
1 A. H. Castro Neto , F. Guinea , N. M. R. Peres , K. S. Novoselov , and A. K. Geim , The electronic properties of graphene, Rev. Mod. Phys. 81 (1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
2 V. N. Kotov , B. Uchoa , V. M. Pereira , F. Guinea , and A. H. Castro Neto , Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys. 84 (3), 1067 (2012)
https://doi.org/10.1103/RevModPhys.84.1067
3 D. N. Basov , M. M. Fogler , A. Lanzara , F. Wang , and Y. Zhang , Graphene spectroscopy, Rev. Mod. Phys. 86 (3), 959 (2014)
https://doi.org/10.1103/RevModPhys.86.959
4 D. M. Basko and I. L. Aleiner , Interplay of Coulomb and electron–phonon interactions in graphene, Phys. Rev. B 77 (4), 041409 (2008)
https://doi.org/10.1103/PhysRevB.77.041409
5 M. Lazzeri , C. Attaccalite , L. Wirtz , and F. Mauri , Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite, Phys. Rev. B 78 (8), 081406 (2008)
https://doi.org/10.1103/PhysRevB.78.081406
6 D. N. Basov , M. M. Fogler , and F. J. García de Abajo , Polaritons in van der Waals materials, Science 354 (6309), aag1992 (2016)
https://doi.org/10.1126/science.aag1992
7 A. N. Grigorenko , M. Polini , and K. S. Novoselov , Graphene plasmonics, Nat. Photonics 6 (11), 749 (2012)
https://doi.org/10.1038/nphoton.2012.262
8 T. Low and P. Avouris , Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8 (2), 1086 (2014)
https://doi.org/10.1021/nn406627u
9 A. Principi , R. Asgari , and M. Polini , Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate, Solid State Commun. 151 (21), 1627 (2011)
https://doi.org/10.1016/j.ssc.2011.07.015
10 T. Stauber and G. Gómez-Santos , Plasmons in layered structures including graphene, New J. Phys. 14 (10), 105018 (2012)
https://doi.org/10.1088/1367-2630/14/10/105018
11 X. F. Gu , I. T. Lin , and J. M. Liu , Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures, Appl. Phys. Lett. 103, 071103 (2013)
https://doi.org/10.1063/1.4818660
12 P. Alonso-González , A. Y. Nikitin , Y. Gao , A. Woessner , M. B. Lundeberg , A. Principi , N. Forcellini , W. Yan , S. Vélez , A. J. Huber , K. Watanabe , T. Taniguchi , F. Casanova , L. E. Hueso , M. Polini , J. Hone , F. H. L. Koppens , and R. Hillenbrand , Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy, Nat. Nanotechnol. 12 (1), 31 (2017)
https://doi.org/10.1038/nnano.2016.185
13 M. B. Lundeberg , Y. D. Gao , R. Asgari , C. Tan , B. Van Duppen , M. Autore , P. Alonso-Gonzalez , A. Woessner , K. Watanabe , T. Taniguchi , R. Hillenbrand , J. Hone , M. Polini , and F. H. L. Koppens , Tuning quantum nonlocal effects in graphene plasmonics, Science 357 (6347), 187 (2017)
https://doi.org/10.1126/science.aan2735
14 A. Principi , E. van Loon , M. Polini , and M. I. Katsnelson , Confining graphene plasmons to the ultimate limit, Phys. Rev. B 98 (3), 035427 (2018)
https://doi.org/10.1103/PhysRevB.98.035427
15 A. Rodríguez Echarri , J. D. Cox , and F. J. García de Abajo , Quantum effects in the acoustic plasmons of atomically thin heterostructures, Optica 6 (5), 630 (2019)
https://doi.org/10.1364/OPTICA.6.000630
16 S. H. Choi , Y. L. Kim , and K. M. Byun , Graphene-onsilver substrates for sensitive surface plasmon resonance imaging biosensors, Opt. Express 19 (2), 458 (2011)
https://doi.org/10.1364/OE.19.000458
17 O. Salihoglu , S. Balci , and C. Kocabas , Plasmonpolaritons on graphene-metal surface and their use in biosensors, Appl. Phys. Lett. 100 (21), 213110 (2012)
https://doi.org/10.1063/1.4721453
18 D. Rodrigo , O. Limaj , D. Janner , D. Etezadi , F. J. García de Abajo , V. Pruneri , and H. Altug , Mid-infrared plasmonic biosensing with graphene, Science 349 (6244), 165 (2015)
https://doi.org/10.1126/science.aab2051
19 F. H. L. Koppens , T. Mueller , P. Avouris , A. C. Ferrari , M. S. Vitiello , and M. Polini , Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9 (10), 780 (2014)
https://doi.org/10.1038/nnano.2014.215
20 X. Xu , Z. Zhang , L. Qiu , J. Zhuang , L. Zhang , H. Wang , C. Liao , H. Song , R. Qiao , P. Gao , Z. Hu , L. Liao , Z. Liao , D. Yu , E. Wang , F. Ding , H. Peng , and K. Liu , Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply, Nat. Nanotechnol. 11 (11), 930 (2016)
https://doi.org/10.1038/nnano.2016.132
21 X. Xu , Z. Zhang , J. Dong , D. Yi , J. Niu , M. Wu , L. Lin , R. Yin , M. Li , J. Zhou , S. Wang , J. Sun , X. Duan , P. Gao , Y. Jiang , X. Wu , H. Peng , R. S. Ruoff , Z. Liu , D. Yu , E. Wang , F. Ding , and K. Liu , Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil, Sci. Bull. (Beijing) 62 (15), 1074 (2017)
https://doi.org/10.1016/j.scib.2017.07.005
22 C. Liu , X. Xu , L. Qiu , M. Wu , R. Qiao , L. Wang , J. Wang , J. Niu , J. Liang , X. Zhou , Z. Zhang , M. Peng , P. Gao , W. Wang , X. Bai , D. Ma , Y. Jiang , X. Wu , D. Yu , E. Wang , J. Xiong , F. Ding , and K. Liu , Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides, Nat. Chem. 11 (8), 730 (2019)
https://doi.org/10.1038/s41557-019-0290-1
23 J. Avila , I. Razado , S. Lorcy , R. Fleurier , E. Pichonat , D. Vignaud , X. Wallart , and M. C. Asensio , Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study, Sci. Rep. 3 (1), 2439 (2013)
https://doi.org/10.1038/srep02439
24 P. A. Khomyakov , G. Giovannetti , P. C. Rusu , G. Brocks , J. van den Brink , and P. J. Kelly , First-principles study of the interaction and charge transfer between graphene and metals, Phys. Rev. B 79 (19), 195425 (2009)
https://doi.org/10.1103/PhysRevB.79.195425
25 A. Varykhalov , M. R. Scholz , T. K. Kim , and O. Rader , Effect of noble-metal contacts on doping and band gap of graphene, Phys. Rev. B 82 (12), 121101 (2010)
https://doi.org/10.1103/PhysRevB.82.121101
26 J. M. Atkin , S. Berweger , A. C. Jones , and M. B. Raschke , Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61 (6), 745 (2012)
https://doi.org/10.1080/00018732.2012.737982
27 X. Chen , D. Hu , R. Mescall , G. You , D. N. Basov , Q. Dai , and M. Liu , Modern scattering-type scanning near-field optical microscopy for advanced material research, Adv. Mater. 31 (24), 1804774 (2019)
https://doi.org/10.1002/adma.201804774
28 A. L. Walter , S. Nie , A. Bostwick , K. S. Kim , L. Moreschini , Y. J. Chang , D. Innocenti , K. Horn , K. F. McCarty , and E. Rotenberg , Electronic structure of graphene on single-crystal copper substrates, Phys. Rev. B 84 (19), 195443 (2011)
https://doi.org/10.1103/PhysRevB.84.195443
29 D. A. Siegel , C. Hwang , A. V. Fedorov , and A. Lanzara , Electron–phonon coupling and intrinsic bandgap in highlyscreened graphene, New J. Phys. 14 (9), 095006 (2012)
https://doi.org/10.1088/1367-2630/14/9/095006
30 Z. Fei , A. S. Rodin , G. O. Andreev , W. Bao , A. S. McLeod , M. Wagner , L. M. Zhang , Z. Zhao , M. Thiemens , G. Dominguez , M. M. Fogler , A. H. C. Neto , C. N. Lau , F. Keilmann , and D. N. Basov , Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487 (7405), 82 (2012)
https://doi.org/10.1038/nature11253
31 J. Chen , M. Badioli , P. Alonso-González , S. Thongrattanasiri , F. Huth , J. Osmond , M. Spasenović , A. Centeno , A. Pesquera , P. Godignon , A. Zurutuza Elorza , N. Camara , F. J. G. de Abajo , R. Hillenbrand , and F. H. L. Koppens , Optical nano-imaging of gate-tunable graphene plasmons, Nature 487 (7405), 77 (2012)
https://doi.org/10.1038/nature11254
32 J. A. Gerber , S. Berweger , B. T. O′ Callahan , and M. B. Raschke , Phase-resolved surface plasmon interferometry of graphene, Phys. Rev. Lett. 113 (5), 055502 (2014)
https://doi.org/10.1103/PhysRevLett.113.055502
33 S. S. Sunku , G. X. Ni , B. Y. Jiang , H. Yoo , A. Sternbach , A. S. McLeod , T. Stauber , L. Xiong , T. Taniguchi , K. Watanabe , P. Kim , M. M. Fogler , and D. N. Basov , Photonic crystals for nano-light in moiré graphene superlattices, Science 362 (6419), 1153 (2018)
https://doi.org/10.1126/science.aau5144
34 A. Woessner , Y. Gao , I. Torre , M. B. Lundeberg , C. Tan , K. Watanabe , T. Taniguchi , R. Hillenbrand , J. Hone , M. Polini , and F. H. L. Koppens , Electrical 2 phase control of infrared light in a 350-nm footprint using graphene plasmons, Nat. Photonics 11 (7), 421 (2017)
https://doi.org/10.1038/nphoton.2017.98
35 Z. Shi , X. Hong , H. A. Bechtel , B. Zeng , M. C. Martin , K. Watanabe , T. Taniguchi , Y. R. Shen , and F. Wang , Observation of a Luttinger-liquid plasmon in metallic singlewalled carbon nanotubes, Nat. Photonics 9 (8), 515 (2015)
https://doi.org/10.1038/nphoton.2015.123
36 G. X. Ni , A. S. McLeod , Z. Sun , L. Wang , L. Xiong , K. W. Post , S. S. Sunku , B. Y. Jiang , J. Hone , C. R. Dean , M. M. Fogler , and D. N. Basov , Fundamental limits to graphene plasmonics, Nature 557 (7706), 530 (2018)
https://doi.org/10.1038/s41586-018-0136-9
37 A. Woessner , M. B. Lundeberg , Y. Gao , A. Principi , P. Alonso-González , M. Carrega , K. Watanabe , T. Taniguchi , G. Vignale , M. Polini , J. Hone , R. Hillenbrand , and F. H. L. Koppens , Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14 (4), 421 (2015)
https://doi.org/10.1038/nmat4169
38 Z. Fei , G. O. Andreev , W. Bao , L. M. Zhang , A. S. McLeod , C. Wang , M. K. Stewart , Z. Zhao , G. Dominguez , M. Thiemens , M. M. Fogler , M. J. Tauber , A. H. CastroNeto , C. N. Lau , F. Keilmann , and D. N. Basov , Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface, Nano Lett. 11 (11), 4701 (2011)
https://doi.org/10.1021/nl202362d
39 S. Dai , Q. Ma , M. K. Liu , T. Andersen , Z. Fei , M. D. Goldflam , M. Wagner , K. Watanabe , T. Taniguchi , M. Thiemens , F. Keilmann , G. C. A. M. Janssen , S. E. Zhu , P. Jarillo-Herrero , M. M. Fogler , and D. N. Basov , Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol. 10 (8), 682 (2015)
https://doi.org/10.1038/nnano.2015.131
40 G. X. Ni , H. Wang , J. S. Wu , Z. Fei , M. D. Goldflam , F. Keilmann , B. Özyilmaz , A. H. Castro Neto , X. M. Xie , M. M. Fogler , and D. N. Basov , Plasmons in graphene moiré superlattices, Nat. Mater. 14 (12), 1217 (2015)
https://doi.org/10.1038/nmat4425
41 B. Y. Jiang , G. X. Ni , Z. Addison , J. K. Shi , X. Liu , S. Y. F. Zhao , P. Kim , E. J. Mele , D. N. Basov , and M. M. Fogler , Plasmon reflections by topological electronic boundaries in bilayer graphene, Nano Lett. 17 (11), 7080 (2017)
https://doi.org/10.1021/acs.nanolett.7b03816
42 L. Jiang , Z. Shi , B. Zeng , S. Wang , J. H. Kang , T. Joshi , C. Jin , L. Ju , J. Kim , T. Lyu , Y. R. Shen , M. Crommie , H. J. Gao , and F. Wang , Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15 (8), 840 (2016)
https://doi.org/10.1038/nmat4653
43 V. E. Babicheva , S. Gamage , M. I. Stockman , and Y. Abate , Near-field edge fringes at sharp material boundaries, Opt. Express 25 (20), 23935 (2017)
https://doi.org/10.1364/OE.25.023935
44 B. Y. Jiang , L. M. Zhang , A. H. C. Neto , D. N. Basov , and M. M. Fogler , Generalized spectral method for near-field optical microscopy, J. Appl. Phys. 119 (5), 054305 (2016)
https://doi.org/10.1063/1.4941343
45 A. S. McLeod , P. Kelly , M. D. Goldflam , Z. Gainsforth , A. J. Westphal , G. Dominguez , M. H. Thiemens , M. M. Fogler , and D. N. Basov , Model for quantitative tipenhanced spectroscopy and the extraction of nanoscaleresolved optical constants, Phys. Rev. B 90 (8), 085136 (2014)
https://doi.org/10.1103/PhysRevB.90.085136
46 L. Wang , X. Z. Xu , L. N. Zhang , R. X. Qiao , M. H. Wu , Z. C. Wang , S. Zhang , J. Liang , Z. H. Zhang , Z. B. Zhang , W. Chen , X. D. Xie , J. Y. Zong , Y. W. Shan , Y. Guo , M. Willinger , H. Wu , Q. Y. Li , W. L. Wang , P. Gao , S. W. Wu , Y. Zhang , Y. Jiang , D. P. Yu , E. G. Wang , X. D. Bai , Z. J. Wang , F. Ding , and K. H. Liu , Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper, Nature 570 (7759), 91 (2019)
https://doi.org/10.1038/s41586-019-1226-z
47 X. Yang , F. Zhai , H. Hu , D. Hu , R. Liu , S. Zhang , M. Sun , Z. Sun , J. Chen , and Q. Dai , Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures, Adv. Mater. 28 (15), 2931 (2016)
https://doi.org/10.1002/adma.201505765
48 L. Novotny and B. Hecht , Principles of Nano-Optics, Cambridge University Press, Cambridge, 2006
49 Y. Abate , S. Gamage , Z. Li , V. Babicheva , M. H. Javani , H. Wang , S. B. Cronin , and M. I. Stockman , Nanoscopy reveals surface-metallic black phosphorus, Light Sci. Appl. Carbon 5 (10), e16162 (2016)
https://doi.org/10.1038/lsa.2016.162
50 O. Frank , J. Vejpravova , V. Holy , L. Kavan , and M. Kalbac , Interaction between graphene and copper substrate: The role of lattice orientation, Carbon 68, 440 (2014)
https://doi.org/10.1016/j.carbon.2013.11.020
51 S. D. Costa , J. Ek Weis , O. Frank , and M. Kalbac , Temperature and face dependent copper–graphene interactions, Carbon 93, 793 (2015)
https://doi.org/10.1016/j.carbon.2015.06.002
52 W. Bao , F. Miao , Z. Chen , H. Zhang , W. Jang , C. Dames , and C. N. Lau , Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol. 4 (9), 562 (2009)
https://doi.org/10.1038/nnano.2009.191
53 D. Yoon , Y. W. Son , and H. Cheong , Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11 (8), 3227 (2011)
https://doi.org/10.1021/nl201488g
54 M. Oliva-Leyva and G. G. Naumis , Anisotropic AC conductivity of strained graphene, J. Phys.: Condens. Matter 26 (12), 125302 (2014)
https://doi.org/10.1088/0953-8984/26/12/125302
55 V. M. Pereira , R. M. Ribeiro , N. M. R. Peres , and A. H. Castro Neto , Optical properties of strained graphene, EPL (Europhys. Lett.) 92 (6), 67001 (2010)
https://doi.org/10.1209/0295-5075/92/67001
56 G. G. Naumis , S. Barraza-Lopez , M. Oliva-Leyva , and H. Terrones , Electronic and optical properties of strained graphene and other strained 2D materials: A review, Rep. Prog. Phys. 80 (9), 096501 (2017)
https://doi.org/10.1088/1361-6633/aa74ef
[1] Hui Yang, Junjie Zeng, Sanyi You, Yulei Han, Zhenhua Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device[J]. Front. Phys. , 2022, 17(6): 63508-.
[2] Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene[J]. Front. Phys. , 2022, 17(4): 43504-.
[3] Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene[J]. Front. Phys. , 2022, 17(4): 43503-.
[4] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[5] Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction[J]. Front. Phys. , 2022, 17(2): 23501-.
[6] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[7] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[8] Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity[J]. Front. Phys. , 2021, 16(4): 43504-.
[9] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[10] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[11] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[12] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[13] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[14] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[15] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed