Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53504    https://doi.org/10.1007/s11467-022-1154-5
RESEARCH ARTICLE
Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties
Mingyun Huang1, Xingxing Jiang1, Yueshao Zheng1, Zhengwei Xu1, Xiong-Xiong Xue2(), Keqiu Chen1, Yexin Feng1()
1. Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
2. School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
 Download: PDF(1393 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By combining structural search and first-principles calculations, we predict a new stable two-dimensional PdSe monolayer, and systematically investigate its structural, electronic and optical properties. The calculated formation enthalpy, phonon spectra and molecular dynamic simulations confirm that PdSe monolayer possesses excellent thermodynamic and dynamic stability. PdSe monolayer is a semiconductor with an indirect band gap of ∼ 1.10 eV. The carrier transport of PdSe monolayer is dominated by hole and exhibits remarkable anisotropy due to the intrinsic structure anisotropy. The optical properties also show obvious anisotropic characteristic with considerable absorption coefficient and broad absorption from the visible to ultraviolet regions. Benefiting from these excellent physical properties, PdSe monolayer is expected to be a promising candidate as electronic and optoelectronic devices.

Keywords first-principles calculation      two-dimensional (2D)      electronic structure      structural search      PdSe     
Corresponding Author(s): Xiong-Xiong Xue,Yexin Feng   
Issue Date: 02 April 2022
 Cite this article:   
Mingyun Huang,Xingxing Jiang,Yueshao Zheng, et al. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1154-5
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53504
1 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012)
https://doi.org/10.1002/adfm.201102111
2 J. Sun, H. Shi, T. Siegrist, and D. J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2, Appl. Phys. Lett. 107(15), 153902 (2015)
https://doi.org/10.1063/1.4933302
3 X. X. Xue, S. Shen, X. Jiang, P. Sengdala, K. Chen, and Y. Feng, Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree, J. Phys. Chem. Lett. 10(12), 3440 (2019)
https://doi.org/10.1021/acs.jpclett.9b00891
4 X. X. Xue, L. M. Tang, K. Chen, L. Zhang, E. G. Wang, and Y. Feng, Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions, J. Phys. Phys. 150(10), 104701 (2019)
https://doi.org/10.1063/1.5082996
5 M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)
https://doi.org/10.1021/jacs.8b07855
6 K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
https://doi.org/10.1038/nature11458
7 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
8 K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
9 X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019)
https://doi.org/10.1038/s41586-019-1695-0
10 M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
https://doi.org/10.1126/science.aav1910
11 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
https://doi.org/10.1038/nature26160
12 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
https://doi.org/10.1038/nature26154
13 C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
https://doi.org/10.1002/adma.200900323
14 J. H. Warner, M. H. Rummeli, A. Bachmatiuk, and B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
https://doi.org/10.1021/nn901648q
15 R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Adv. Mater. 23(34), 3944 (2011)
https://doi.org/10.1002/adma.201102584
16 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
17 Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)
https://doi.org/10.1007/s11467-018-0854-3
18 X. X. Xue, Y. Feng, K. Chen, and L. Zhang, The vertical growth of MoS2 layers at the initial stage of CVD from first-principles, J. Phys. Phys. 148(13), 134704 (2018)
https://doi.org/10.1063/1.5010996
19 J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
https://doi.org/10.1038/ncomms5475
20 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
21 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
22 L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, and H. X. Deng, Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal d band, Appl. Phys. Lett. 112(1), 012101 (2018)
https://doi.org/10.1063/1.5000448
23 S. L. James, Metal–organic frameworks, Chem. Soc. Rev. 32(5), 276 (2003)
https://doi.org/10.1039/b200393g
24 L. Sun, M. G. Campbell, and M. Dinca, Electrically conductive porous metal-organic frameworks, Angew. Chem. Int. Ed. 55(11), 3566 (2016)
https://doi.org/10.1002/anie.201506219
25 A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
https://doi.org/10.1126/science.aad1080
26 Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
https://doi.org/10.1002/adfm.201605059
27 B. K. Agrawal, P. S. Yadav, S. Kumar, and S. Agrawal, First-principles calculation of Ga-based semiconductors, Phys. Rev. B 52(7), 4896 (1995)
https://doi.org/10.1103/PhysRevB.52.4896
28 S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F. Meloni, and M. Serra, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb, Phys. Rev. B 41(17), 12079 (1990)
https://doi.org/10.1103/PhysRevB.41.12079
29 G. D. Nguyen, L. Liang, Q. Zou, M. Fu, A. D. Oyedele, B. G. Sumpter, Z. Liu, Z. Gai, K. Xiao, and A. P. Li, 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
https://doi.org/10.1103/PhysRevLett.121.086101
30 J. Lin, S. Zuluaga, P. Yu, Z. Liu, S. T. Pantelides, and K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 119(1), 016101 (2017)
https://doi.org/10.1017/S1431927617009163
31 X. Zhu, F. Li, Y. Wang, M. Qiao, and Y. Li, Pd2Se3 monolayer: A novel two-dimensional material with excellent electronic, transport, and optical properties, J. Mater. Chem. C 6(16), 4494 (2018)
https://doi.org/10.1039/C8TC00810H
32 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
33 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, J. Mater. Chem. C 183(10), 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
34 Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Phys. Phys. 137(22), 224108 (2012)
https://doi.org/10.1063/1.4769731
35 J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Phys. Phys. 137(8), 084104 (2012)
https://doi.org/10.1063/1.4746757
36 X. Jiang, Y. Zheng, X. X. Xue, J. Dai, and Y. Feng, Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure, J. Phys. Phys. 152(7), 074701 (2020)
https://doi.org/10.1063/1.5138253
37 K. Hu, J. Lian, L. Zhu, Q. Chen, and S. Y. Xie, Prediction of Fe2P-type TiTe2 under pressure, Phys. Rev. B 101(13), 134109 (2020)
38 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
39 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
40 G. Kresse, J. Furthmuller, and J. Hafner, Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation, Phys. Rev. B 50(18), 13181 (1994)
https://doi.org/10.1103/PhysRevB.50.13181
41 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
42 Y. Zheng, X. Jiang, X. Xue, J. Dai, and Y. Feng, Ab initio study of pressure-driven phase transition in FePS3 and FePSe2, Phys. Rev. B 100(17), 174102 (2019)
https://doi.org/10.1103/PhysRevB.100.174102
43 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmente d-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
44 P. E. Blöchl, Projector augmente d-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
45 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
46 A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
47 G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Phys. Phys. 97(4), 2635 (1992)
https://doi.org/10.1063/1.463940
48 Y. Feng, F. Li, Z. Hu, X. Luo, L. Zhang, X. F. Zhou, H. T. Wang, J. J. Xu, and E. G. Wang, Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction, Phys. Rev. B 85(15), 155454 (2012)
https://doi.org/10.1103/PhysRevB.85.155454
49 W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
https://doi.org/10.1021/nl4007479
50 Y. Feng, K. Chen, X. Z. Li, E. Wang, and L. Zhang, Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces, J. Phys. Phys. 146(3), 034704 (2017)
https://doi.org/10.1063/1.4974178
51 J. Tan, K. Chen, and L. M. Tang, Out-of-plane spontaneous polarization and superior photoelectricity in two-dimensional SiSn, J. Phys.: Condens. Matter 32(6), 065003 (2020)
https://doi.org/10.1088/1361-648X/ab4ff7
52 J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80(1), 72 (1950)
https://doi.org/10.1103/PhysRev.80.72
53 A. Franceschetti, S. H. Wei, and A. Zunger, Effects of ordering on the electron effective mass and strain deformation potential in GaInP2: Deficiencies of the k.p model, Phys. Rev. B 52(19), 13992 (1995)
https://doi.org/10.1103/PhysRevB.52.13992
54 S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62(13), 8828 (2000)
https://doi.org/10.1103/PhysRevB.62.8828
55 N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer, J. Am. Chem. Soc. 139(32), 11125 (2017)
https://doi.org/10.1021/jacs.7b05133
56 Y. F. Ding, Q. Q. Zhao, Z. L. Yu, Y. Q. Zhao, B. Liu, P. B. He, H. Zhou, K. Li, S. F. Yin, and M. Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure, J. Mater. Chem. C 7(24), 7433 (2019)
https://doi.org/10.1039/C9TC02267H
57 A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Phys. Phys. 140(18), 18A301 (2014)
https://doi.org/10.1063/1.4869598
58 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
59 S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79(11), 115409 (2009)
https://doi.org/10.1103/PhysRevB.79.115409
60 C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Mater. Chem. C 115(27), 13303 (2011)
https://doi.org/10.1021/jp2000442
61 A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139(40), 14090 (2017)
https://doi.org/10.1021/jacs.7b04865
62 B. Chakraborty, H. S. S. R. Matte, A. K. Sood, and C. N. R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44(1), 92 (2013)
https://doi.org/10.1002/jrs.4147
63 W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10), 106801 (2013)
https://doi.org/10.1103/PhysRevLett.111.106801
[1] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[2] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[3] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[4] Jia-Qi Liu, Qian Gao, Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap[J]. Front. Phys. , 2022, 17(6): 63505-.
[5] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[6] Pengyue Gao, Bo Gao, Shaohua Lu, Hanyu Liu, Jian Lv, Yanchao Wang, Yanming Ma. Structure search of two-dimensional systems using CALYPSO methodology[J]. Front. Phys. , 2022, 17(2): 23203-.
[7] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[8] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[9] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[10] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[11] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[12] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[13] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[14] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[15] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed