|
|
|
Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations |
Changjie Zhou1, Huili Zhu1( ), Weifeng Yang2( ), Qiubao Lin1, Tongchang Zheng1, Lan Yang1, Shuqiong Lan1 |
1. Xiamen Key Laboratory of Ultra-Wide Bandgap Semiconductor Materials and Devices, Department of Physics, School of Science, Jimei University, Xiamen 361021, China 2. Department of Microelectronics and Integrated Circuits, Xiamen University, Xiamen 361005, China |
|
|
|
|
Abstract Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.
|
| Keywords
band offsets
WS2
SiO2
X-ray photoelectron spectroscopy
first-principles calculations
|
|
Corresponding Author(s):
Huili Zhu,Weifeng Yang
|
|
Issue Date: 27 June 2022
|
|
| 1 |
F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105( 13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
|
| 2 |
Eda G. , Yamaguchi H. , Voiry D. , Fujita T. , W. Chen M. , Chhowalla M. . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11( 12): 5111
https://doi.org/10.1021/nl201874w
|
| 3 |
N. Coleman J. , Lotya M. , O’Neill A. , D. Bergin S. , J. King P. , Khan U. , Young K. , Gaucher A. , De S. , J. Smith R. , V. Shvets I. , K. Arora S. , Stanton G. , Y. Kim H. , Lee K. , T. Kim G. , S. Duesberg G. , Hallam T. , J. Boland J. , J. Wang J. , F. Donegan J. , C. Grunlan J. , Moriarty G. , Shmeliov A. , J. Nicholls R. , M. Perkins J. , M. Grieveson E. , Theuwissen K. , W. McComb D. , D. Nellist P. , Nicolosi V. . Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331( 6017): 568
https://doi.org/10.1126/science.1194975
|
| 4 |
J. Zhan Y. , Liu Z. , Najmaei S. , M. Ajayan P. , Lou J. . Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8( 7): 966
https://doi.org/10.1002/smll.201102654
|
| 5 |
H. Lee Y. , Q. Zhang X. , J. Zhang W. , T. Chang M. , T. Lin C. , D. Chang K. , C. Yu Y. , T. W. Wang J. , S. Chang C. , J. Li L. , W. Lin T. . Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24( 17): 2320
https://doi.org/10.1002/adma.201104798
|
| 6 |
Y. Liu P. , Luo T. , Xing J. , Xu H. , Y. Hao H. , Liu H. , J. Dong J. . Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett., 2017, 12( 1): 558
https://doi.org/10.1186/s11671-017-2329-9
|
| 7 |
L. Elías A. , Perea-Lopez N. , Castro-Beltran A. , Berkdemir A. , T. Lv R. , M. Feng S. , D. Long A. , Hayashi T. , A. Kim Y. , Endo M. , R. Gutierrez H. , R. Pradhan N. , Balicas L. , E. Mallouk T. , Lopez-Urias F. , Terrones H. , Terrones M. . Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano, 2013, 7( 6): 5235
https://doi.org/10.1021/nn400971k
|
| 8 |
L. Zhu H. , J. Zhou C. , S. Tang B. , F. Yang W. , W. Chai J. , L. Tay W. , Gong H. , S. Pan J. , D. Zou W. , J. Wang S. , Z. Chi D. . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112( 17): 171604
https://doi.org/10.1063/1.5022719
|
| 9 |
X. Ye M. , Y. Zhang D. , K. Yap Y. . Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6( 2): 43
https://doi.org/10.3390/electronics6020043
|
| 10 |
X. Cong C. , Z. Shang J. , L. Wang Y. , Yu T. . Optical properties of 2D semiconductor WS2. Adv. Opt. Mater., 2018, 6( 1): 1700767
https://doi.org/10.1002/adom.201700767
|
| 11 |
J. Schuck P. , Bao W. , J. Borys N. . A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys., 2016, 11( 2): 117804
https://doi.org/10.1007/s11467-015-0526-5
|
| 12 |
C. Zhou Z. , Y. Yang F. , Wang S. , Wang L. , F. Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204
https://doi.org/10.1007/s11467-021-1114-5
|
| 13 |
L. Zhu H. , H. Yang W. , P. Wu Y. , Lin W. , Y. Kang J. , J. Zhou C. . Au and Ti induced charge redistributions on monolayer WS2. Chin. Phys. B, 2015, 24( 7): 077301
https://doi.org/10.1088/1674-1056/24/7/077301
|
| 14 |
LaMountain T. , J. Lenferink E. , J. Chen Y. , K. Stanev T. , P. Stern N. . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13( 4): 138114
https://doi.org/10.1007/s11467-018-0795-x
|
| 15 |
Luo G. , Z. Zhang Z. , O. Li H. , X. Song X. , W. Deng G. , Cao G. , Xiao M. , P. Guo G. . Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12( 4): 128502
https://doi.org/10.1007/s11467-017-0652-3
|
| 16 |
M. Hill H. , F. Rigosi A. , T. Rim K. , W. Flynn G. , F. Heinz T. . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16( 8): 4831
https://doi.org/10.1021/acs.nanolett.6b01007
|
| 17 |
Z. Guo Y. , Robertson J. . Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett., 2016, 108( 23): 233104
https://doi.org/10.1063/1.4953169
|
| 18 |
Jadczak J. , Kutrowska-Girzycka J. , Kapuscinski P. , S. Huang Y. , Wojs A. , Bryja L. . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28( 39): 395702
https://doi.org/10.1088/1361-6528/aa87d0
|
| 19 |
K. Nayak P. , C. Lin F. , H. Yeh C. , S. Huang J. , W. Chiu P. . Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale, 2016, 8( 11): 6035
https://doi.org/10.1039/C5NR08395H
|
| 20 |
Ubrig N. , Jo S. , Philippi M. , Costanzo D. , Berger H. , B. Kuzmenko A. , F. Morpurgo A. . Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17( 9): 5719
https://doi.org/10.1021/acs.nanolett.7b02666
|
| 21 |
Van der Donck M. , Zarenia M. , M. Peeters F. . Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B, 2018, 97( 8): 081109
https://doi.org/10.1103/PhysRevB.97.081109
|
| 22 |
W. Iqbal M. , Z. Iqbal M. , F. Khan M. , A. Kamran M. , Majid A. , Alharbi T. , Eom J. . Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Advances, 2016, 6( 29): 24675
https://doi.org/10.1039/C6RA02390H
|
| 23 |
J. Huo N. , X. Yang S. , M. Wei Z. , S. Li S. , B. Xia J. , B. Li J. . Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep., 2014, 4( 1): 5209
https://doi.org/10.1038/srep05209
|
| 24 |
Akinwande D. , Petrone N. , Hone J. . Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5( 1): 5678
https://doi.org/10.1038/ncomms6678
|
| 25 |
Wang Y. , Kong D. , Huang S. , Shi Y. , Ding M. , Von Lim Y. , Xu T. , Chen F. , Li X. , Y. Yang H. . 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem., 2018, 6( 23): 10813
https://doi.org/10.1039/C8TA02773K
|
| 26 |
Y. Lan C. , Y. Zhou Z. , F. Zhou Z. , Li C. , Shu L. , F. Shen L. , P. Li D. , T. Dong R. , P. Yip S. , Ho J. . Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 2018, 11( 6): 3371
https://doi.org/10.1007/s12274-017-1941-4
|
| 27 |
Ouyang C. , X. Chen Y. , Y. Qin Z. , W. Zeng D. , Zhang J. , Wang H. , S. Xie C. . Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci., 2018, 455 : 45
https://doi.org/10.1016/j.apsusc.2018.05.148
|
| 28 |
A. Asres G. , J. Baldoví J. , Dombovari A. , Järvinen T. , S. Lorite G. , Mohl M. , Shchukarev A. , Pérez Paz A. , Xian L. , P. Mikkola J. , L. Spetz A. , Jantunen H. , Rubio Á. , Kordás K. . Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res., 2018, 11( 8): 4215
https://doi.org/10.1007/s12274-018-2009-9
|
| 29 |
H. Xu Q. , T. Lu Y. , Y. Zhao S. , Hu N. , W. Jiang Y. , Li H. , Wang Y. , Q. Gao H. , Li Y. , Yuan M. , Chu L. , H. Li J. , N. Xie Y. . A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 2021, 89 : 106382
https://doi.org/10.1016/j.nanoen.2021.106382
|
| 30 |
H. Xu Q. , S. Fang Y. , Q. S. Jing B. , Hu N. , Lin K. , F. Pan Y. , Xu L. , Q. Gao H. , Yuan M. , Chu L. , W. Ma Y. , N. Xie Y. , Chen J. , H. Wang L. . A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron., 2021, 187 : 113329
https://doi.org/10.1016/j.bios.2021.113329
|
| 31 |
Z. Yan Z. , H. Jiang Z. , P. Lu J. , H. Ni Z. . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13( 4): 138115
https://doi.org/10.1007/s11467-018-0785-z
|
| 32 |
J. Yin W. , L. Zeng X. , Wen B. , X. Ge Q. , Xu Y. , Teobaldi G. , M. Liu L. . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501
https://doi.org/10.1007/s11467-020-1021-1
|
| 33 |
Wang H. , L. Ren D. , Lu C. , B. Yan X. . Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories. Appl. Phys. Lett., 2018, 112( 23): 231903
https://doi.org/10.1063/1.5024799
|
| 34 |
Zheliuk O. , M. Lu J. , Yang J. , T. Ye J. . Monolayer superconductivity in WS2. Phys. Status Solidi Rapid Res. Lett., 2017, 11( 9): 1700245
https://doi.org/10.1002/pssr.201700245
|
| 35 |
Ulstrup S. , J. Koch R. , Schwarz D. , M. McCreary K. , T. Jonker B. , Singh S. , Bostwick A. , Rotenberg E. , Jozwiak C. , Katoch J. . Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett., 2019, 114( 15): 151601
https://doi.org/10.1063/1.5088968
|
| 36 |
F. Yang W. , Kawai H. , Bosman M. , S. Tang B. , W. Chai J. , L. Tay W. , Yang J. , L. Seng H. , L. Zhu H. , Gong H. , F. Liu H. , E. J. Goh K. , J. Wang S. , Z. Chi D. . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10( 48): 22927
https://doi.org/10.1039/C8NR07498D
|
| 37 |
S. Tang B. , G. Yu Z. , Huang L. , W. Chai J. , L. Wong S. , Deng J. , F. Yang W. , Gong H. , J. Wang S. , W. Ang K. , W. Zhang Y. , Z. Chi D. . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12( 3): 2506
https://doi.org/10.1021/acsnano.7b08261
|
| 38 |
R. Gutiérrez H. , Perea-Lopez N. , L. Elias A. , Berkdemir A. , Wang B. , Lv R. , Lopez-Urias F. , H. Crespi V. , Terrones H. , Terrones M. . Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13( 8): 3447
https://doi.org/10.1021/nl3026357
|
| 39 |
Yang L. , B. Zhu X. , J. Xiong S. , L. Wu X. , Shan Y. , K. Chu P. . Synergistic WO2·2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces, 2016, 8( 22): 13966
https://doi.org/10.1021/acsami.6b04045
|
| 40 |
Bhandavat R. , David L. , Singh G. . Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett., 2012, 3( 11): 1523
https://doi.org/10.1021/jz300480w
|
| 41 |
Cadot S. , Renault O. , Rouchon D. , Mariolle D. , Nolot E. , Thieuleux C. , Veyre L. , Okuno H. , Martin F. , A. Quadrelli E. . Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. J. Vac. Sci. Technol. A, 2017, 35( 6): 061502
https://doi.org/10.1116/1.4996550
|
| 42 |
A. Kraut E. , W. Grant R. , R. Waldrop J. , P. Kowalczyk S. . Precise determination of the valence-band edge in X-ray photoemission spectra-application to measurement of semi-conductor interface potentials. Phys. Rev. Lett., 1980, 44( 24): 1620
https://doi.org/10.1103/PhysRevLett.44.1620
|
| 43 |
G. Tao J. , W. Chai J. , Zhang Z. , S. Pan J. , J. Wang S. . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104( 23): 232110
https://doi.org/10.1063/1.4883865
|
| 44 |
Santoni A. , Biccari F. , Malerba C. , Valentini M. , Chierchia R. , Mittiga A. . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys., 2013, 46( 17): 175101
https://doi.org/10.1088/0022-3727/46/17/175101
|
| 45 |
J. Grunthaner F. , F. Lewis B. , Zamini N. , Maserjian J. , Madhukar A. . XPS studies of structure-induced radiation effects at the Si/SiO2 interface. IEEE Trans. Nucl. Sci., 1980, 27( 6): 1640
https://doi.org/10.1109/TNS.1980.4331082
|
| 46 |
Zhang J. , H. Wei S. , L. Wang X. , J. Xiang J. , W. Wang W. . Experimental estimation of charge neutrality level of SiO2. Appl. Surf. Sci., 2017, 422 : 690
https://doi.org/10.1016/j.apsusc.2017.06.078
|
| 47 |
L. Zhu H. , J. Zhou C. , J. Huang X. , L. Wang X. , Z. Xu H. , Lin Y. , H. Yang W. , P. Wu Y. , Lin W. , Guo F. . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D Appl. Phys., 2016, 49( 6): 065304
https://doi.org/10.1088/0022-3727/49/6/065304
|
| 48 |
K. Lin Y. , S. Chen R. , C. Chou T. , H. Lee Y. , F. Chen Y. , H. Chen K. , C. Chen L. . Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2016, 8( 34): 22637
https://doi.org/10.1021/acsami.6b06615
|
| 49 |
Kresse G. , Hafner J. . Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B, 1993, 47( 1): 558
https://doi.org/10.1103/PhysRevB.47.558
|
| 50 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
| 51 |
Grimme S. , Antony J. , Ehrlich S. , Krieg H. . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132( 15): 154104
https://doi.org/10.1063/1.3382344
|
| 52 |
Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118( 18): 8207
https://doi.org/10.1063/1.1564060
|
| 53 |
Bengtsson L. . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59( 19): 12301
https://doi.org/10.1103/PhysRevB.59.12301
|
| 54 |
I. Malyi O. , V. Kulish V. , Persson C. . In search of new reconstructions of (001) alpha-quartz surface: A first principles study. RSC Advances, 2014, 4( 98): 55599
https://doi.org/10.1039/C4RA10726H
|
| 55 |
L. Scopel W. , J. R. da Silva A. , Fazzio A. . Amorphous HfO2 and Hf1−xSixO via a melt-and-quench scheme using ab initio molecular dynamics. Phys. Rev. B, 2008, 77( 17): 172101
https://doi.org/10.1103/PhysRevB.77.172101
|
| 56 |
L. Scopel W. , H. Miwa R. , M. Schmidt T. , Venezuela P. . MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys., 2015, 117( 19): 194303
https://doi.org/10.1063/1.4921058
|
| 57 |
C. Nguyen T. , Otani M. , Okada S. . Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys. Rev. Lett., 2011, 106( 10): 106801
https://doi.org/10.1103/PhysRevLett.106.106801
|
| 58 |
H. Feng S. , L. Yang R. , Y. Jia Z. , Y. Xiang J. , S. Wen F. , P. Mu C. , M. Nie A. , S. Zhao Z. , Xu B. , G. Tao C. , J. Tian Y. , Y. Liu Z. . Strain release induced novel fluorescence variation in CVD-grown monolayer WS2 crystals. ACS Appl. Mater. Interfaces, 2017, 9( 39): 34071
https://doi.org/10.1021/acsami.7b09744
|
| 59 |
Keyshar K. , Berg M. , Zhang X. , Vajtai R. , Gupta G. , K. Chan C. , E. Beechem T. , M. Ajayan P. , D. Mohite A. , Ohta T. . Experimental determination of the ionization energies of MoSe2, WS2, and MoS2 on SiO2 using photoemission electron microscopy. ACS Nano, 2017, 11( 8): 8223
https://doi.org/10.1021/acsnano.7b03242
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|