Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 52503    https://doi.org/10.1007/s11467-022-1169-y
RESEARCH ARTICLE
Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging
Qian Zhao1, Shijie Tu1, Qiannan Lei1, Qingyang Yue1, Chengshan Guo1, Yangjian Cai1,2()
1. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
 Download: PDF(2889 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The wavefront shaping based technique has been introduced to detect the edges of amplitude objects through complex media, but the extraction of the boundary information of invisible phase objects through complex media has not been demonstrated yet. Here, we present a phase contrast imaging technique to overcome the scattering, aiming to achieve the edge detection of the phase object through the complex media. An operator based on the experimentally measured transmission matrix is obtained by numerically adding a spiral phase in the Fourier domain. With the inverse of the filtered transmission matrix, we can directly reconstruct the edge enhanced images for both amplitude object and phase object beyond scattering. Experimentally, both digital and real objects are imaged, and the results verify that isotropic edge detection can be achieved with our technique. Our work could benefit the detection of invisible phase objects through complex media.

Keywords complex media      edge detection      spiral phase contrast imaging     
Corresponding Author(s): Yangjian Cai   
Issue Date: 17 June 2022
 Cite this article:   
Qian Zhao,Shijie Tu,Qiannan Lei, et al. Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging[J]. Front. Phys. , 2022, 17(5): 52503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1169-y
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/52503
Fig.1  Principle of transmission matrix based spiral phase contrast imaging through complex medium. (1) Operation of acquiring transmission matrix T of the complex medium. (2) Imaging through complex medium by use of the inverse T. (2′) Operation of obtaining T^ by performing a two-dimensional spatial Fourier transform on T of every input field. (3′) T^ is filtered by a spiral phase function V. (4′) Return to the spatial domain by taking an inverse Fourier transform on the term of T^×V. (5′) Spiral phase contrast imaging through complex medium by applying the inverse Tfilt.
Fig.2  Experimental setup. L: Lens; M: Mirror; BS: Beam splitter; DMD: Digital micro-mirror device; P: Pinhole; O: Object; OBJ: Objective; CM: Complex medium; CMOS: Complementary metal-oxide-semiconductor camera.
Fig.3  Edge detection of digital amplitude and phase objects by applying TM-based spiral phase contrast imaging technique. (a) The intensity distribution of the amplitude object of a star. (b) The phase distribution of the phase object of a moon. (c, d) Intensity speckle patterns at the output plane when the field of object transports through the ZnO scattering layer. The inset are the reconstructed images with the conventional inverse T operation. (e, f) The edge enhanced images with our presented technique. (g, h) The intensity profiles along the white dashed lines in (e, f), respectively. The green and red lines are the experimental data and theoretical data. (i) Correlation coefficient between the recovered edge enhanced images and the images digitally filtered by a spiral phase as a function of γ which is the ratio between the numbers of output modes and input modes.
Fig.4  Edge detection of real amplitude and phase objects by applying TM-based spiral phase contrast imaging technique. (a) A binary amplitude object of number “5”. (b) A phase object formed by an oil droplet on a cover glass. (c, d) The recorded intensity speckle patterns at the camera plane. (e, f) The corresponding reconstructed images with the conventional inverse T operation. (g, h) The corresponding edge enhanced images obtained with our presented technique. Scale bar, 1 mm.
1 Mawet D. , Serabyn E. , K. Wallace J. , Pueyo L. . Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. Opt. Lett., 2011, 36( 8): 1506
https://doi.org/10.1364/OL.36.001506
2 Jesacher A. , Fürhapter S. , Bernet S. , Ritsch-Marte M. . Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 2005, 94( 23): 233902
https://doi.org/10.1103/PhysRevLett.94.233902
3 Qadir F. , Peer M. , Khan K. . Efficient edge detection methods for diagnosis of lung cancer based on two-dimensional cellular automata. Adv. Appl. Sci. Res., 2012, 3( 4): 2050
4 Nisthula P. , Yadhu R. . A novel method to detect bone cancer using image fusion and edge detection. Int. J. Eng. Comp. Sci., 2013, 2( 6): 2012
5 Zhu T. , Zhou Y. , Lou Y. , Ye H. , Qiu M. , Ruan Z. , Fan S. . Plasmonic computing of spatial differentiation. Nat. Commun., 2017, 8( 1): 15391
https://doi.org/10.1038/ncomms15391
6 Fürhapter S. , Jesacher A. , Bernet S. , Ritsch-Marte M. . Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13( 3): 689
https://doi.org/10.1364/OPEX.13.000689
7 Bernet S. , Jesacher A. , Fürhapter S. , Maurer C. , Ritsch-Marte M. . Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 2006, 14( 9): 3792
https://doi.org/10.1364/OE.14.003792
8 Qiu X. , Li F. , Zhang W. , Zhu Z. , Chen L. . Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica, 2018, 5( 2): 208
https://doi.org/10.1364/OPTICA.5.000208
9 Zhou C. , Wang G. , Huang H. , Song L. , Xue K. . Edge detection based on joint iteration ghost imaging. Opt. Express, 2019, 27( 19): 27295
https://doi.org/10.1364/OE.27.027295
10 Ren H. , Zhao S. , Gruska J. . Edge detection based on single-pixel imaging. Opt. Express, 2018, 26( 5): 5501
https://doi.org/10.1364/OE.26.005501
11 Liu Y. , Yu P. , Hu X. , Wang Z. , Li Y. , Gong L. . Single-pixel spiral phase contrast imaging. Opt. Lett., 2020, 45( 14): 4028
https://doi.org/10.1364/OL.396903
12 A. Davis J. , E. McNamara D. , M. Cottrell D. , Campos J. . Image processing with the radial Hilbert transform: Theory and experiments. Opt. Lett., 2000, 25( 2): 99
https://doi.org/10.1364/OL.25.000099
13 Song H. , Zhang Y. , Ren Y. , Yuan Z. , Zhao D. , Zheng Z. , Gao L. . Non-local edge enhanced imaging with incoherent thermal light. Appl. Phys. Lett., 2020, 116( 17): 174001
https://doi.org/10.1063/5.0002069
14 K. Liu S. , H. Li Y. , L. Liu S. , Y. Zhou Z. , Li Y. , Yang C. , C. Guo G. , S. Shi B. . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28( 24): 35415
https://doi.org/10.1364/OE.395910
15 Zhu X. , Yao H. , Yu J. , Gbur G. , Wang F. , Chen Y. , Cai Y. . Inverse design of a spatial filter in edge enhanced imaging. Opt. Lett., 2020, 45( 9): 2542
https://doi.org/10.1364/OL.391429
16 S. Guo C. , J. Han Y. , B. Xu J. , Ding J. . Radial Hilbert transform with Laguerre−Gaussian spatial filters. Opt. Lett., 2006, 31( 10): 1394
https://doi.org/10.1364/OL.31.001394
17 Zhou Y. , Feng S. , Nie S. , Ma J. , Yuan C. . Image edge enhancement using Airy spiral phase filter. Opt. Express, 2016, 24( 22): 25258
https://doi.org/10.1364/OE.24.025258
18 Popoff S. , Lerosey G. , Fink M. , C. Boccara A. , Gigan S. . Image transmission through an opaque material. Nat. Commun., 2010, 1( 1): 81
https://doi.org/10.1038/ncomms1078
19 Bertolotti J. , G. van Putten E. , Blum C. , Lagendijk A. , L. Vos W. , P. Mosk A. . Non-invasive imaging through opaque scattering layers. Nature, 2012, 491( 7423): 232
https://doi.org/10.1038/nature11578
20 Yaqoob Z. , Psaltis D. , S. Feld M. , Yang C. . Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2008, 2( 2): 110
https://doi.org/10.1038/nphoton.2007.297
21 Yang J. , Shen Y. , Liu Y. , S. Hemphill A. , V. Wang L. . Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl. Phys. Lett., 2017, 111( 20): 201108
https://doi.org/10.1063/1.5005831
22 Choi Y. , Yoon C. , Kim M. , D. Yang T. , Fang-Yen C. , R. Dasari R. , J. Lee K. , Choi W. . Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109( 20): 203901
https://doi.org/10.1103/PhysRevLett.109.203901
23 Baek Y. , Lee K. , Park Y. . High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl., 2018, 10( 2): 024053
https://doi.org/10.1103/PhysRevApplied.10.024053
24 Li Z. , Yu Z. , Hui H. , Li H. , Zhong T. , Liu H. , Lai P. . Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 2020, 8( 6): 954
https://doi.org/10.1364/PRJ.388062
25 Popoff S. , Lerosey G. , Carminati R. , Fink M. , Boccara A. , Gigan S. . Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104( 10): 100601
https://doi.org/10.1103/PhysRevLett.104.100601
26 Zhao Q. , P. Yu P. , F. Liu Y. , Q. Wang Z. , M. Li Y. , Gong L. . Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Appl. Phys. Lett., 2020, 116( 18): 181101
https://doi.org/10.1063/5.0005955
27 Gong L. , Zhao Q. , Zhang H. , Y. Hu X. , Huang K. , M. Yang J. , M. Li Y. . Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 2019, 8( 1): 27
https://doi.org/10.1038/s41377-019-0140-3
28 Hu X. , Zhao Q. , Yu P. , Li X. , Wang Z. , Li Y. , Gong L. . Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express, 2018, 26( 2): 1796
https://doi.org/10.1364/OE.26.001796
29 Sprik R. , Tourin A. , de Rosny J. , Fink M. . Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems. Phys. Rev. B, 2008, 78( 1): 012202
https://doi.org/10.1103/PhysRevB.78.012202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed