|
|
|
Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging |
Qian Zhao1, Shijie Tu1, Qiannan Lei1, Qingyang Yue1, Chengshan Guo1, Yangjian Cai1,2( ) |
1. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China 2. School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
|
|
Abstract The wavefront shaping based technique has been introduced to detect the edges of amplitude objects through complex media, but the extraction of the boundary information of invisible phase objects through complex media has not been demonstrated yet. Here, we present a phase contrast imaging technique to overcome the scattering, aiming to achieve the edge detection of the phase object through the complex media. An operator based on the experimentally measured transmission matrix is obtained by numerically adding a spiral phase in the Fourier domain. With the inverse of the filtered transmission matrix, we can directly reconstruct the edge enhanced images for both amplitude object and phase object beyond scattering. Experimentally, both digital and real objects are imaged, and the results verify that isotropic edge detection can be achieved with our technique. Our work could benefit the detection of invisible phase objects through complex media.
|
| Keywords
complex media
edge detection
spiral phase contrast imaging
|
|
Corresponding Author(s):
Yangjian Cai
|
|
Issue Date: 17 June 2022
|
|
| 1 |
Mawet D. , Serabyn E. , K. Wallace J. , Pueyo L. . Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. Opt. Lett., 2011, 36( 8): 1506
https://doi.org/10.1364/OL.36.001506
|
| 2 |
Jesacher A. , Fürhapter S. , Bernet S. , Ritsch-Marte M. . Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 2005, 94( 23): 233902
https://doi.org/10.1103/PhysRevLett.94.233902
|
| 3 |
Qadir F. , Peer M. , Khan K. . Efficient edge detection methods for diagnosis of lung cancer based on two-dimensional cellular automata. Adv. Appl. Sci. Res., 2012, 3( 4): 2050
|
| 4 |
Nisthula P. , Yadhu R. . A novel method to detect bone cancer using image fusion and edge detection. Int. J. Eng. Comp. Sci., 2013, 2( 6): 2012
|
| 5 |
Zhu T. , Zhou Y. , Lou Y. , Ye H. , Qiu M. , Ruan Z. , Fan S. . Plasmonic computing of spatial differentiation. Nat. Commun., 2017, 8( 1): 15391
https://doi.org/10.1038/ncomms15391
|
| 6 |
Fürhapter S. , Jesacher A. , Bernet S. , Ritsch-Marte M. . Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13( 3): 689
https://doi.org/10.1364/OPEX.13.000689
|
| 7 |
Bernet S. , Jesacher A. , Fürhapter S. , Maurer C. , Ritsch-Marte M. . Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 2006, 14( 9): 3792
https://doi.org/10.1364/OE.14.003792
|
| 8 |
Qiu X. , Li F. , Zhang W. , Zhu Z. , Chen L. . Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica, 2018, 5( 2): 208
https://doi.org/10.1364/OPTICA.5.000208
|
| 9 |
Zhou C. , Wang G. , Huang H. , Song L. , Xue K. . Edge detection based on joint iteration ghost imaging. Opt. Express, 2019, 27( 19): 27295
https://doi.org/10.1364/OE.27.027295
|
| 10 |
Ren H. , Zhao S. , Gruska J. . Edge detection based on single-pixel imaging. Opt. Express, 2018, 26( 5): 5501
https://doi.org/10.1364/OE.26.005501
|
| 11 |
Liu Y. , Yu P. , Hu X. , Wang Z. , Li Y. , Gong L. . Single-pixel spiral phase contrast imaging. Opt. Lett., 2020, 45( 14): 4028
https://doi.org/10.1364/OL.396903
|
| 12 |
A. Davis J. , E. McNamara D. , M. Cottrell D. , Campos J. . Image processing with the radial Hilbert transform: Theory and experiments. Opt. Lett., 2000, 25( 2): 99
https://doi.org/10.1364/OL.25.000099
|
| 13 |
Song H. , Zhang Y. , Ren Y. , Yuan Z. , Zhao D. , Zheng Z. , Gao L. . Non-local edge enhanced imaging with incoherent thermal light. Appl. Phys. Lett., 2020, 116( 17): 174001
https://doi.org/10.1063/5.0002069
|
| 14 |
K. Liu S. , H. Li Y. , L. Liu S. , Y. Zhou Z. , Li Y. , Yang C. , C. Guo G. , S. Shi B. . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28( 24): 35415
https://doi.org/10.1364/OE.395910
|
| 15 |
Zhu X. , Yao H. , Yu J. , Gbur G. , Wang F. , Chen Y. , Cai Y. . Inverse design of a spatial filter in edge enhanced imaging. Opt. Lett., 2020, 45( 9): 2542
https://doi.org/10.1364/OL.391429
|
| 16 |
S. Guo C. , J. Han Y. , B. Xu J. , Ding J. . Radial Hilbert transform with Laguerre−Gaussian spatial filters. Opt. Lett., 2006, 31( 10): 1394
https://doi.org/10.1364/OL.31.001394
|
| 17 |
Zhou Y. , Feng S. , Nie S. , Ma J. , Yuan C. . Image edge enhancement using Airy spiral phase filter. Opt. Express, 2016, 24( 22): 25258
https://doi.org/10.1364/OE.24.025258
|
| 18 |
Popoff S. , Lerosey G. , Fink M. , C. Boccara A. , Gigan S. . Image transmission through an opaque material. Nat. Commun., 2010, 1( 1): 81
https://doi.org/10.1038/ncomms1078
|
| 19 |
Bertolotti J. , G. van Putten E. , Blum C. , Lagendijk A. , L. Vos W. , P. Mosk A. . Non-invasive imaging through opaque scattering layers. Nature, 2012, 491( 7423): 232
https://doi.org/10.1038/nature11578
|
| 20 |
Yaqoob Z. , Psaltis D. , S. Feld M. , Yang C. . Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2008, 2( 2): 110
https://doi.org/10.1038/nphoton.2007.297
|
| 21 |
Yang J. , Shen Y. , Liu Y. , S. Hemphill A. , V. Wang L. . Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl. Phys. Lett., 2017, 111( 20): 201108
https://doi.org/10.1063/1.5005831
|
| 22 |
Choi Y. , Yoon C. , Kim M. , D. Yang T. , Fang-Yen C. , R. Dasari R. , J. Lee K. , Choi W. . Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109( 20): 203901
https://doi.org/10.1103/PhysRevLett.109.203901
|
| 23 |
Baek Y. , Lee K. , Park Y. . High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl., 2018, 10( 2): 024053
https://doi.org/10.1103/PhysRevApplied.10.024053
|
| 24 |
Li Z. , Yu Z. , Hui H. , Li H. , Zhong T. , Liu H. , Lai P. . Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 2020, 8( 6): 954
https://doi.org/10.1364/PRJ.388062
|
| 25 |
Popoff S. , Lerosey G. , Carminati R. , Fink M. , Boccara A. , Gigan S. . Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104( 10): 100601
https://doi.org/10.1103/PhysRevLett.104.100601
|
| 26 |
Zhao Q. , P. Yu P. , F. Liu Y. , Q. Wang Z. , M. Li Y. , Gong L. . Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Appl. Phys. Lett., 2020, 116( 18): 181101
https://doi.org/10.1063/5.0005955
|
| 27 |
Gong L. , Zhao Q. , Zhang H. , Y. Hu X. , Huang K. , M. Yang J. , M. Li Y. . Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 2019, 8( 1): 27
https://doi.org/10.1038/s41377-019-0140-3
|
| 28 |
Hu X. , Zhao Q. , Yu P. , Li X. , Wang Z. , Li Y. , Gong L. . Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express, 2018, 26( 2): 1796
https://doi.org/10.1364/OE.26.001796
|
| 29 |
Sprik R. , Tourin A. , de Rosny J. , Fink M. . Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems. Phys. Rev. B, 2008, 78( 1): 012202
https://doi.org/10.1103/PhysRevB.78.012202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|