Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 51502    https://doi.org/10.1007/s11467-022-1172-3
RESEARCH ARTICLE
Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection
Yi-Ming Wu, Gang Fan, Fang-Fang Du()
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
 Download: PDF(2681 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present an error-detected hyperparallel Toffoli (hyper-Toffoli) gate for a three-photon system based on the interface between polarized photon and cavity-nitrogen-vacancy (NV) center system. This hyper-Toffoli gate can be used to perform double Toffoli gate operations simultaneously on both the polarization and spatial-mode degrees of freedom (DoFs) of a three-photon system with a low decoherence, shorten operation time, and less quantum resources required, in compared with those on two independent three-photon systems in one DoF only. As the imperfect cavity-NV-center interactions are transformed into the detectable failures rather than infidelity based on the heralding mechanism of detectors, a near-unit fidelity of the quantum hyper-Toffoli gate can be implemented. By recycling the procedures, the efficiency of our protocol for the hyper-Toffoli gate is improved further. Meanwhile, the evaluation of gate performance with achieved experiment parameters shows that it is feasible with current experimental technology and provides a promising building block for quantum compute.

Keywords hyperparallel Toffoli gate      photon system      quantum information processing     
Corresponding Author(s): Fang-Fang Du   
Issue Date: 30 June 2022
 Cite this article:   
Yi-Ming Wu,Gang Fan,Fang-Fang Du. Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection[J]. Front. Phys. , 2022, 17(5): 51502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1172-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/51502
Fig.1  A cavity-NV center system consists of the negatively charged NV center confined in an optical one-sided cavity. The optical transitions from the spin-ground states |±1? to the excited state |A2? are coupled by the |σ?? circularly polarized photons.
Fig.2  Schematic diagram for the hyper-parallel Toffoli gate for a three-photon system in polarized DoF assisted by two NV-cavity systems. CPBS j ( j = 1, 2, 3, 4) represents a circularly polarized beam splitter, which completes the reflection of state |0?p and the transmission of state |1?p. H k ( k = 1, 2, 3, 4, 5) is a half-wave plate inclined at 22.5°, which performs the polarized Hadamard operation, i.e., |0?p(|0?p+ |1?p)/2,|1?p(|0?p?|1?p)/2. X performs a qubit-flip operation on the polarized DoF of a photon [|0?p?|1?p] by tilting the half-wave plate at 45°. VBS 1 is an adjustable beam splitter with transmission coefficient (r1?r0)/2 and reflection coefficient 1?[(r1?r0)/2]2. Similarly, the transmission and reflection coefficient of VBS 2 are [(r1?r0)/2]3 and 1?[(r1?r0)/2]6, respectively. D represents a single-photon detector. DL is a delay line, which makes the two wave packets confluent at the same time.
Fig.3  Schematic diagram for the hyper-parallel Toffoli gate for a three-photon system in spatial DoF assisted by two NV-microcavity systems. BS 1 and BS 4 denote 50:50 beam splitter which completes the Hadamard operation of the photon in spatial DoF, i.e., |1?cs?(|0?ds+|1?ds)/2. BS 2 and BS 3 complete the operation, i.e., |0?ds?(|0?ds+|1?ds)/ 2,|1?ds?(|0?ds?|1?ds)/2.
Measurement results Single-qubit operations
|+1?1|+1?2 Ia?Ib?Ic
|+1?1|?1?2 (σzp)a?Ib?Ic
|?1?1|+1?2 Ia?(σzp)b?Ic
|?1?1|?1?2 (σzp)a?(σzp)b?Ic
Tab.1  The measurement results of the two-electron-spin states in NV 1 and NV 2, and the corresponding feed-forward single-qubit operations on polarized DoF of three photons.
Measurement results Single-qubit operations
|+1?3|+1?4 Ia?Ib?Ic
|+1?3|?1?4 eiπ|0?as?Ib?Ic
|?1?3|+1?4 Ia?eiπ|1?bs?Ic
|?1?3|?1?4 eiπ|0?as?eiπ|1?bs?Ic
Tab.2  The measurement results of the two-electron-spin states in NV 3 and NV 4, and the corresponding feed-forward single-qubit operations on polarized DoF of three photons.
Fig.4  Schematic diagram of a hybrid hyper-Toffoli gate.
g/κ=0.5 g/κ=1.5 g/κ=2.4
ηT 90.53 % 98.90 % 99.57 %
ηD 0.01 % 0 0
Tab.3  The efficiency ηT of the hyper-Toffoli gates and the probability ηD of D triggered in the block 1 or block 2 vs. the ratio of g/κ when ωc=ωp=ωc at γ=0.01κ.
Fig.5  The efficiency ηT of the hyper-Toffoli gates and the probability ηD of D triggered in the block 1 vs the ratio of g/κ when ωc=ωp=ωc at γ=0.01κ.
1 A. Nielsen M. , Chuang I. , K. Grover L. . Quantum computation and quantum information. Am. J. Phys., 2002, 70( 5): 558
https://doi.org/10.1119/1.1463744
2 X. Liang L. , Y. Zheng Y. , X. Zhang Y. , Zhang M. . Error-detected N-photon cluster state generation based on the controlled-phase gate using a quantum dot in an optical microcavity. Front. Phys., 2020, 15( 2): 21601
https://doi.org/10.1007/s11467-019-0931-2
3 Li T. , L. Long G. . Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22( 6): 063017
https://doi.org/10.1088/1367-2630/ab8ab5
4 D. Ye Z. , Pan D. , Sun Z. , G. Du C. , G. Yin L. , L. Long G. . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16( 2): 21503
https://doi.org/10.1007/s11467-020-1025-x
5 S. Yan P. , Zhou L. , Zhong W. , B. Sheng Y. . Measurement-based entanglement purification for entangled coherent states. Front. Phys., 2022, 17( 2): 21501
https://doi.org/10.1007/s11467-021-1103-8
6 Wang C. . Quantum secure direct communication: Intersection of communication and cryptography. Fundam. Res., 2021, 1( 1): 91
https://doi.org/10.1016/j.fmre.2021.01.002
7 Wang P. , Q. Yu C. , X. Wang Z. , Y. Yuan R. , F. Du F. , C. Ren B. . Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys., 2022, 17( 3): 31501
https://doi.org/10.1007/s11467-021-1120-7
8 W. Shor P. . Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 1999, 41( 2): 303
https://doi.org/10.1137/S0036144598347011
9 K. Grover L. . Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79( 2): 325
https://doi.org/10.1103/PhysRevLett.79.325
10 AbuGhanem M. , H. Homid A. , Abdel-Aty M. . Cavity control as a new quantum algorithms implementation treatment. Front. Phys., 2018, 13( 1): 130303
https://doi.org/10.1007/s11467-017-0709-3
11 D. Cai X. , Wu D. , E. Su Z. , C. Chen M. , L. Wang X. , Li L. , L. Liu N. , Y. Lu C. , W. Pan J. . Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett., 2015, 114( 11): 110504
https://doi.org/10.1103/PhysRevLett.114.110504
12 Allcock J. , Y. Zhang S. . Quantum machine learning. Natl. Sci. Rev., 2019, 6( 1): 26
https://doi.org/10.1093/nsr/nwy149
13 L. Ouyang X. , Z. Huang X. , K. Wu Y. , G. Zhang W. , Wang X. , L. Zhang H. , He L. , Y. Chang X. , M. Duan L. . Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system. Phys. Rev. A, 2020, 101( 1): 012307
https://doi.org/10.1103/PhysRevA.101.012307
14 R. Chong D. , Kim M. , Ahn J. , Jeong H. . Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17( 1): 12504
https://doi.org/10.1007/s11467-021-1099-0
15 Q. Liu W. , R. Wei H. . Optimal synthesis of the Fredkin gate in a multilevel system. New J. Phys., 2020, 22( 6): 063026
https://doi.org/10.1088/1367-2630/ab8e13
16 Q. Liu W. , R. Wei H. , C. Kwek L. . Low-cost Fredkin gate with auxiliary space. Phys. Rev. A, 2020, 14( 5): 054057
17 V. Shende V. , L. Markov I. , S. Bullock S. . Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A, 2004, 69( 6): 062321
https://doi.org/10.1103/PhysRevA.69.062321
18 C. Ralph T. , J. Resch K. , Gilchrist A. . Efficient Toffoli gates using qudits. Phys. Rev. A, 2007, 75( 2): 022313
https://doi.org/10.1103/PhysRevA.75.022313
19 Radu I. , P. Spiller T. , J. Munro W. . Generalized Toffoli gates using qudit catalysis. Phys. Rev. A, 2009, 80( 1): 012313
20 K. Yu N. , Y. Duan R. , S. Ying M. . Five two-qubit gates are necessary for implementing the Toffoli gate. Phys. Rev. A, 2013, 88( 1): 010304
https://doi.org/10.1103/PhysRevA.88.010304
21 Fiurášek J. . Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A, 2006, 73( 6): 062313
https://doi.org/10.1103/PhysRevA.73.062313
22 Soeken M. , M. Miller D. , Drechsler R. . Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A, 2013, 88( 4): 042322
https://doi.org/10.1103/PhysRevA.88.042322
23 Fedorov A. , Steffen L. , Baur M. , P. da Silva M. , Wallraff A. . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481( 7380): 170
https://doi.org/10.1038/nature10713
24 E. Rasmussen S. , Groenland K. , Gerritsma R. , Schoutens K. , T. Zinner N. . Single-step implementation of high-fidelity n-bit Toffoli gatess. Phys. Rev. A, 2020, 101( 2): 022308
https://doi.org/10.1103/PhysRevA.101.022308
25 Daraeizadeh S. , P. Premaratne S. , Khammassi N. , Song X. , Perkowski M. , Y. Matsuura A. . Machine learning-based three-qubit gate design for the Toffoli gate and parity check in transmon systems. Phys. Rev. A, 2020, 102( 1): 012601
https://doi.org/10.1103/PhysRevA.102.012601
26 R. Wei H. , G. Deng F. . Compact quantum gates on electron-spin qubits assisted by diamond nitrogen vacancy centers inside cavities. Phys. Rev. A, 2013, 88( 4): 042323
https://doi.org/10.1103/PhysRevA.88.042323
27 R. Wei H. , G. Deng F. . Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep., 2015, 4( 1): 7551
https://doi.org/10.1038/srep07551
28 R. Wei H. , G. Deng F. . Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express, 2014, 22( 1): 593
https://doi.org/10.1364/OE.22.000593
29 Z. Song G. , L. Guo J. , Liu Q. , R. Wei H. , L. Long G. . Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A, 2021, 104( 1): 012608
https://doi.org/10.1103/PhysRevA.104.012608
30 Monz T. , Kim K. , Hänsel W. , Riebe M. , S. Villar A. , Schindler P. , Chwalla M. , Hennrich M. , Blatt R. . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102( 4): 040501
https://doi.org/10.1103/PhysRevLett.102.040501
31 Solenov D. , E. Economou S. , L. Reinecke T. . Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity. Phys. Rev. B, 2013, 87( 3): 035308
https://doi.org/10.1103/PhysRevB.87.035308
32 P. Lanyon B. , Barbieri M. , P. Almeida M. , Jennewein T. , C. Ralph T. , J. Resch K. , J. Pryde G. , L. O’Brien J. , Gilchrist A. , G. White A. . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5( 2): 134
https://doi.org/10.1038/nphys1150
33 O. Kiktenko E. , S. Nikolaeva A. , Xu P. , V. Shlyapnikov G. , K. Fedorov A. . Scalable quantum computing with qudits on a graph. Phys. Rev. A, 2020, 101( 2): 022304
https://doi.org/10.1103/PhysRevA.101.022304
34 Li T. , L. Long G. . Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A, 2016, 94( 2): 022343
https://doi.org/10.1103/PhysRevA.94.022343
35 H. Han Y. , Cao C. , Fan L. , Zhang R. . Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express, 2021, 29( 13): 20045
https://doi.org/10.1364/OE.426325
36 F. Du F. , R. Shi Z. . Robust hybrid hyper-controlled-not gates assisted by an input−output process of low-Q cavities. Opt. Express, 2019, 27( 13): 17493
https://doi.org/10.1364/OE.27.017493
37 R. Wei H. , L. Long G. . Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators. Phys. Rev. A, 2015, 91( 3): 032324
https://doi.org/10.1103/PhysRevA.91.032324
38 J. Wang T. , Zhang Y. , Wang C. . Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett., 2014, 11( 2): 025203
https://doi.org/10.1088/1612-2011/11/2/025203
39 R. Wei H. , G. Deng F. , L. Long G. . Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express, 2016, 24( 16): 18619
https://doi.org/10.1364/OE.24.018619
40 H. Ru S. , L. Wang Y. , An M. , R. Wang F. , Zhang P. , L. Li F. . Realization of a deterministic quantum Toffoli gate with a single photon. Phys. Rev. A, 2021, 103( 2): 022606
https://doi.org/10.1103/PhysRevA.103.022606
41 Gaebel T. , Domhan M. , Popa I. , Wittmann C. , Neumann P. , Jelezko F. , R. Rabeau J. , Stavrias N. , D. Greentree A. , Prawer S. , Meijer J. , Twamley J. , R. Hemmer P. , Wrachtrup J. . Room-temperature coherent coupling of single spins in diamond. Nat. Phys., 2006, 2( 6): 408
https://doi.org/10.1038/nphys318
42 D. Fuchs G. , V. Dobrovitski V. , M. Toyli D. , J. Heremans F. , D. Awschalom D. . Gigahertz dynamics of a strongly driven single quantum spin. Science, 2009, 326( 5959): 1520
https://doi.org/10.1126/science.1181193
43 Englund D. , Shields B. , Rivoire K. , Hatami F. , Vučković J. , Park H. , D. Lukin M. . Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett., 2010, 10( 10): 3922
https://doi.org/10.1021/nl101662v
44 Zhang J. , Suter D. . Experimental Protection of Two-Qubit Quantum Gates against Environmental Noise by Dynamical Decoupling. Phys. Rev. Lett., 2015, 115( 11): 110502
https://doi.org/10.1103/PhysRevLett.115.110502
45 Robledo L. , Childress L. , Bernien H. , Hensen B. , F. A. Alkemade P. , Hanson R. . High-fidelity projective readout of a solid-state spin quantum register. Nature, 2011, 477( 7366): 574
https://doi.org/10.1038/nature10401
46 V. G. Dutt M. , Childress L. , Jiang L. , Togan E. , Maze J. , Jelezko F. , S. Zibrov A. , R. Hemmer P. , D. Lukin M. . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316( 5829): 1312
https://doi.org/10.1126/science.1139831
47 Shi F. , Rong X. , Xu N. , Wang Y. , Wu J. , Chong B. , Peng X. , Kniepert J. , S. Schoenfeld R. , Harneit W. , Feng M. , Du J. . Room-temperature implementation of the Deutsch−Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett., 2010, 105( 4): 040504
https://doi.org/10.1103/PhysRevLett.105.040504
48 van der Sar T. , H. Wang Z. , S. Blok M. , Bernien H. , H. Taminiau T. , M. Toyli D. , A. Lidar D. , D. Awschalom D. , Hanson R. , V. Dobrovitski V. . Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature, 2012, 484( 7392): 82
https://doi.org/10.1038/nature10900
49 Arroyo-Camejo S. , Lazariev A. , W. Hell S. , Balasubramanian G. . Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun., 2014, 5( 1): 4870
https://doi.org/10.1038/ncomms5870
50 Zu C. , B. Wang W. , He L. , G. Zhang W. , Y. Dai C. , Wang F. , M. Duan L. . Experimental realization of universal geometric quantum gates with solid-state spins. Nature, 2014, 514( 7520): 72
https://doi.org/10.1038/nature13729
51 Togan E. , Chu Y. , S. Trifonov A. , Jiang L. , Maze J. , Childress L. , V. G. Dutt M. , S. Sørensen A. , R. Hemmer P. , S. Zibrov A. , D. Lukin M. . Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466( 7307): 730
https://doi.org/10.1038/nature09256
52 Kosaka H. , Niikura N. . Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett., 2015, 114( 5): 053603
https://doi.org/10.1103/PhysRevLett.114.053603
53 Bernien H. , Hensen B. , Pfaff W. , Koolstra G. , S. Blok M. , Robledo L. , H. Taminiau T. , Markham M. , J. Twitchen D. , Childress L. , Hanson R. . Heralded entanglement between solid-state qubits separated by three metres. Nature, 2013, 497( 7447): 86
https://doi.org/10.1038/nature12016
54 C. Ren B. , G. Deng F. . Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett., 2013, 10( 11): 115201
https://doi.org/10.1088/1612-2011/10/11/115201
55 J. Wang T. , Wang C. . Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A, 2014, 90( 5): 052310
https://doi.org/10.1103/PhysRevA.90.052310
56 Wang C. , Zhang Y. , Z. Jiao R. , S. Jin G. . Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express, 2013, 21( 16): 19252
https://doi.org/10.1364/OE.21.019252
57 F. Du F. , T. Liu Y. , R. Shi Z. , X. Liang Y. , Tang J. , Liu J. . Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link. Opt. Express, 2019, 27( 19): 27046
https://doi.org/10.1364/OE.27.027046
58 Chen Q. , Yang W. , Feng M. , Du J. . Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A, 2011, 83( 5): 054305
https://doi.org/10.1103/PhysRevA.83.054305
59 O. Scully M. S. Zubairy M., Quantum Optics, Cambridge University Press, 1997
60 Y. Hu C. , J. Munro W. , G. Rarity J. . Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B, 2008, 78( 12): 125318
https://doi.org/10.1103/PhysRevB.78.125318
61 H. An J. , Feng M. , H. Oh C. . Quantum-information processing with a single photon by an input−output process with respect to low-Q cavities. Phys. Rev. A, 2009, 79( 3): 032303
https://doi.org/10.1103/PhysRevA.79.032303
62 C. Pursley B. , G. Carter S. , K. Yakes M. , S. Bracker A. , Gammon D. . Picosecond pulse shaping of single photons using quantum dots. Nat. Commun., 2018, 9( 1): 115
https://doi.org/10.1038/s41467-017-02552-7
63 Albrecht R. , Bommer A. , Deutsch C. , Reichel J. , Becher C. . Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett., 2013, 110( 24): 243602
https://doi.org/10.1103/PhysRevLett.110.243602
64 J. M. Hausmann B. , Shields B. , Quan Q. , Maletinsky P. , McCutcheon M. , T. Choy J. , M. Babinec T. , Kubanek A. , Yacoby A. , D. Lukin M. , Lonc̆ar M. . Integrated diamond networks for quantum nanophotonics. Nano Lett., 2012, 12( 3): 1578
https://doi.org/10.1021/nl204449n
65 Teissier J. , Barfuss A. , Appel P. , Neu E. , Maletinsky P. . Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett., 2014, 113( 2): 020503
https://doi.org/10.1103/PhysRevLett.113.020503
66 M. C. Fu K. , Santori C. , E. Barclay P. , J. Rogers L. , B. Manson N. , G. Beausoleil R. . Observation of the dynamic Jahn−Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett., 2009, 103( 25): 256404
https://doi.org/10.1103/PhysRevLett.103.256404
67 C. Bassett L. , J. Heremans F. , G. Yale C. , B. Buckley B. , D. Awschalom D. . Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett., 2011, 107( 26): 266403
https://doi.org/10.1103/PhysRevLett.107.266403
68 Siyushev P. , Pinto H. , Vörös M. , Gali A. , Jelezko F. , Wrachtrup J. . Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett., 2013, 110( 16): 167402
https://doi.org/10.1103/PhysRevLett.110.167402
[1] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[2] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[3] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[4] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front. Phys. , 2009, 4(1): 21-37.
[5] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed