Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 52504    https://doi.org/10.1007/s11467-022-1177-y
RESEARCH ARTICLE
Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry
Changdong Chen1,2(), Youwen Liu1,2, Lina Zhao3, Xiaopeng Hu4, Yangyang Fu1,2()
1. College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
2. Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
3. Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
4. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University, Nanjing 210093, China
 Download: PDF(4809 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Asymmetric mode transformation in waveguide is of great significance for on-chip integrated devices with one-way effect, while it is challenging to achieve asymmetric nonlinear-mode-conversion (NMC) due to the limitations imposed by phase-matching. In this work, we theoretically proposed a new scheme for realizing asymmetric NMC by combining frequency-doubling process and periodic PT symmetric modulation in an optical waveguide. By engineering the one-way momentum from PT symmetric modulation, we have demonstrated the unidirectional conversion from pump to second harmonic with desired guided modes. Our findings offer new opportunities for manipulating nonlinear optical fields with PT symmetry, which could further boost more exploration on on-chip nonlinear devices assisted by non-Hermitian optics.

Keywords nonlinear mode conversion      meta-grating      PT symmetry      optical waveguide     
Corresponding Author(s): Changdong Chen,Yangyang Fu   
Issue Date: 30 June 2022
 Cite this article:   
Changdong Chen,Youwen Liu,Lina Zhao, et al. Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry[J]. Front. Phys. , 2022, 17(5): 52504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1177-y
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/52504
Fig.1  (a) The schematic configuration of asymmetric NMC. Active and passive modulations taking a period of Λ, with Δ?(y)=cos(qy)+isin(qy), are applied on the LN waveguide layer with a thickness of d= 1.01 μm, giving rise to a one-way wave-vector q along y direction. (b) The mode dispersions in LN waveguide for FW (from 0.8 μm to 1.6 μm) and the corresponding SH. There is only one intersection at about 1.064 μm that is a probable FW wavelength to realize phase-matched frequency-doubling process. (c) Forward and backward phase-matching conditions induced by PT symmetry for TM22ω mode in the dispersion diagram of SH. (d) The sketch map of entire process of the asymmetric NMC only for forward-propagation, can two FW photons (0th order mode) be transformed into one SH photon (0th order mode) via the coupling between the interactions resulting from nonlinearity and PT symmetry.
Fig.2  The dependences of nonlinear mode conversion on propagation distance without PT-symmetry modulation. (a) TM0ω mode of FW. (b) TM02ω mode of SH. (c) TM22ω mode of SH.
Fig.3  Asymmetric mode conversion with nonlinearity and PT-symmetry modulation together. The mode intensities, respectively for TM0ω mode of FW, TM02ω mode of SH and TM22ω mode of SH, vary with the change of propagation distance under the situations of forward-propagation (a?c) and backward-propagation (d?f).
Fig.4  The excited TM02ω mode intensity changes with the variation of the modulation depth of PT-symmetry. The insets illustrate the mode intensities that can be eventually generated with distinct modulation depth Δξ=0, Δξ=0.25 and Δξ=0.45.
Fig.5  Asymmetric NMC in a purely passive system respectively for the forward (a, b) and backward (c, d) propagations.
1 M. Bender C. , Boettcher S. . Real spectra in Non-Hermitian Hamiltonians Having PT symmetry. Phys. Rev. Lett., 1998, 80( 24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
2 Y. Sun G. , C. Tang J. , P. Kou S. . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17( 3): 33502
https://doi.org/10.1007/s11467-021-1126-1
3 El-Ganainy R. , G. Makris K. , Khajavikhan M. , H. Musslimani Z. , Rotter S. , N. Christodoulides D. . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14( 1): 11
https://doi.org/10.1038/nphys4323
4 A. Miri M. , Alu A. . Exceptional points in optics and photonics. Science, 2019, 363( 6422): eaar7709
https://doi.org/10.1126/science.aar7709
5 Guo A. , J. Salamo G. , Duchesne D. , Morandotti R. , Volatier-Ravat M. , Aimez V. , A. Siviloglou G. , N. Christodoulides D. . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103( 9): 093902
https://doi.org/10.1103/PhysRevLett.103.093902
6 Fu Y. , Xu Y. , Chen H. . Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24( 2): 1648
https://doi.org/10.1364/OE.24.001648
7 Laha A. , Dey S. , K. Gandhi H. , Biswas A. , Ghosh S. . Exceptional point and toward mode-selective optical isolation. ACS Photonics, 2020, 7( 4): 967
https://doi.org/10.1021/acsphotonics.9b01646
8 Hodaei H. , A. Miri M. , Heinrich M. , N. Christodoulides D. , Khajavikhan M. . Parity−time-symmetric microring lasers. Science, 2014, 346( 6212): 975
https://doi.org/10.1126/science.1258480
9 Peng B. , K. Ozdemir S. , Liertzer M. , J. Chen W. , Kramer J. , Yilmaz H. , Wiersig J. , Rotter S. , Yang L. . Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 2016, 113( 25): 6845
https://doi.org/10.1073/pnas.1603318113
10 Zhang N. , Y. Gu Z. , Y. Wang K. , Li M. , Ge L. , M. Xiao S. , H. Song Q. . Quasiparity−time symmetric microdisk laser. Laser Photonics Rev., 2017, 11( 5): 1700052
https://doi.org/10.1002/lpor.201700052
11 Chang L. , S. Jiang X. , Y. Hua S. , Yang C. , M. Wen J. , Jiang L. , Y. Li G. , Z. Wang G. , Xiao M. . Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 2014, 8( 7): 524
https://doi.org/10.1038/nphoton.2014.133
12 Peng B. , K. Ozdemir S. , C. Lei F. , Monifi F. , Gianfreda M. , L. Long G. , H. Fan S. , Nori F. , M. Bender C. , Yang L. . Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10( 5): 394
https://doi.org/10.1038/nphys2927
13 D. Chen C. , N. Zhao L. . The effect of thermal-induced noise on doubly-coupled-ring optical gyroscope sensor around exceptional point. Opt. Commun., 2020, 474 : 126108
https://doi.org/10.1016/j.optcom.2020.126108
14 D. Chen C. , J. Xie Y. , W. Huang S. . Nanophotonic optical gyroscope with sensitivity enhancement around “mirrored” exceptional points. Opt. Commun., 2021, 483 : 126674
https://doi.org/10.1016/j.optcom.2020.126674
15 Chen M. , F. Li Z. , Tong X. , D. Wang X. , H. Yang F. . Manipulating the critical gain level of spectral singularity in active hybridized metamaterials. Opt. Express, 2020, 28( 12): 17966
https://doi.org/10.1364/OE.393429
16 Liang Y. , Gaimard Q. , Klimov V. , Uskov A. , Benisty H. , Ramdane A. , Lupu A. . Coupling of nanoantennas in loss-gain environment for application in active tunable metasurfaces. Phys. Rev. B, 2021, 103( 4): 045419
https://doi.org/10.1103/PhysRevB.103.045419
17 Cao Y. , Fu Y. , Zhou Q. , Xu Y. , Gao L. , Chen H. . Giant Goos−Hänchen shift induced by bounded states in opticalPT-symmetric bilayer structures. Opt. Express, 2019, 27( 6): 7857
https://doi.org/10.1364/OE.27.007857
18 Fu Y. , Fei Y. , Dong D. , Liu Y. . Photonic spin Hall effect in PT symmetric metamaterials. Front. Phys., 2019, 14( 6): 62601
https://doi.org/10.1007/s11467-019-0938-8
19 Feng L. , El-Ganainy R. , Ge L. . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11( 12): 752
https://doi.org/10.1038/s41566-017-0031-1
20 Greenberg M. , Orenstein M. . Irreversible coupling by use of dissipative optics. Opt. Lett., 2004, 29( 5): 451
https://doi.org/10.1364/OL.29.000451
21 Feng L. , Ayache M. , Q. Huang J. , L. Xu Y. , H. Lu M. , F. Chen Y. , Fainman Y. , Scherer A. . Nonreciprocal light propagation in a silicon photonic circuit. Science, 2011, 333( 6043): 729
https://doi.org/10.1126/science.1206038
22 N. Ghosh S. , D. Chong Y. . Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides. Sci. Rep., 2016, 6( 1): 19837
https://doi.org/10.1038/srep19837
23 Chatzidimitriou D. , Pitilakis A. , Yioultsis T. , E. Kriezis E. . Breaking reciprocity in a non-Hermitian photonic coupler with saturable absorption. Phys. Rev. A, 2021, 103( 5): 053503
https://doi.org/10.1103/PhysRevA.103.053503
24 Pitilakis A. , Chatzidimitriou D. , V. Yioultsis T. , E. Kriezis E. . Asymmetric Si-slot coupler with nonreciprocal response based on graphene saturable absorption. IEEE J. Quantum Electron., 2021, 57( 3): 8400210
https://doi.org/10.1109/JQE.2021.3071247
25 Lin Z. , Ramezani H. , Eichelkraut T. , Kottos T. , Cao H. , N. Christodoulides D. . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106( 21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
26 Feng L. , L. Xu Y. , S. Fegadolli W. , H. Lu M. , E. B. Oliveira J. , R. Almeida V. , F. Chen Y. , Scherer A. . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12( 2): 108
https://doi.org/10.1038/nmat3495
27 F. Jia Y. , X. Yan Y. , V. Kesava S. , D. Gomez E. , C. Giebink N. . Passive parity−time symmetry in organic thin film waveguides. ACS Photonics, 2015, 2( 2): 319
https://doi.org/10.1021/ph500459j
28 Y. Zhu X. , L. Xu Y. , Zou Y. , C. Sun X. , He C. , H. Lu M. , P. Liu X. , F. Chen Y. . Asymmetric diffraction based on a passive parity−time grating. Appl. Phys. Lett., 2016, 109( 11): 111101
https://doi.org/10.1063/1.4962639
29 Zhao H. , S. Fegadolli W. , K. Yu J. , F. Zhang Z. , Ge L. , Scherer A. , Feng L. . Metawaveguide for asymmetric interferometric light−light switching. Phys. Rev. Lett., 2016, 117( 19): 193901
https://doi.org/10.1103/PhysRevLett.117.193901
30 Wang W. , Q. Wang L. , D. Xue R. , L. Chen H. , P. Guo R. , M. Liu Y. , Chen J. . Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT-symmetric systems. Phys. Rev. Lett., 2017, 119( 7): 077401
https://doi.org/10.1103/PhysRevLett.119.077401
31 Y. Fu Y. , D. Xu Y. , Y. Chen H. . Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13( 4): 134206
https://doi.org/10.1007/s11467-018-0781-3
32 Chang L. , F. Li Y. , Volet N. , Wang L. , Peters J. , E. Bowers J. . Thin film wavelength converters for photonic integrated circuits. Optica, 2016, 3( 5): 531
https://doi.org/10.1364/OPTICA.3.000531
33 Jankowski M. , Langrock C. , Desiatov B. , Marandi A. , Wang C. , Zhang M. , R. Phillips C. , Loncar M. , M. Fejer M. . Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7( 1): 40
https://doi.org/10.1364/OPTICA.7.000040
34 H. Sun D. , W. Zhang Y. , Z. Wang D. , Song W. , Y. Liu X. , B. Pang J. , Q. Geng D. , H. Sang Y. , Liu H. . Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl., 2020, 9( 1): 197
https://doi.org/10.1038/s41377-020-00434-0
35 Luo R. , He Y. , X. Liang H. , X. Li M. , Lin Q. . Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 2018, 5( 8): 1006
https://doi.org/10.1364/OPTICA.5.001006
36 Wang C. , Y. Li Z. , H. Kim M. , Xiong X. , F. Ren X. , C. Guo G. , F. Yu N. , Loncar M. . Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 2017, 8( 1): 2098
https://doi.org/10.1038/s41467-017-02189-6
37 Rose A. , Huang D. , R. Smith D. . Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett., 2011, 107( 6): 063902
https://doi.org/10.1103/PhysRevLett.107.063902
38 Rose A. , R. Smith D. . Overcoming phase mismatch in nonlinear metamaterials. Opt. Mater. Express, 2011, 1( 7): 1232
https://doi.org/10.1364/OME.1.001232
39 Suchowski H. , O’Brien K. , J. Wong Z. , Salandrino A. , Yin X. , Zhang X. . Phase mismatch–free nonlinear propagation in optical zero-index materials. Science, 2013, 342( 6163): 1223
https://doi.org/10.1126/science.1244303
[1] Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW[J]. Front. Phys. , 2018, 13(2): 134202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed